Низкочастотный DDS генератор на ATmega8. Тест конструктора DDS-генератора сигналов из Китая Генератор низкочастотных сигналов на микроконтроллере

Уже давно пользуюсь генератором сигналов UDB1005S , построенном по DDS технологии, куплен он был на али за 30$.

Если кратко, то серия UDB100 x включает в себя 3 модели UDB1002, UDB1005, UDB1008, последняя цифра определяет максимальную рабочую частоту, а буква S на конце, если она есть, говорит о том, что генератор поддерживает sweep_mode . В основе генератора лежит связка плис + мк, мк обслуживает периферию(кнопки, энкодер, дисплей), а плис занимается генерацией сигнала.

Генератор имеет один аналоговый выход с возможностью регулировки амплитуды и смещения по постоянному напряжению, один цифровой с TTL уровнями, может работать в режиме счётчика импульсов и в режиме частотомера.

Теперь давайте рассмотрим основные особенности.

Аналоговый выход:

  • Форма выходного сигнала: синусоидальный, прямоугольный, пилообразный
  • Амплитуда выходного сигнала ≤9Vp-p(без нагрузки)
  • Выходное сопротивление 50Ω±10%
  • Смещение по постоянному напряжению ±2.5V(без нагрузки)
  • Частотный диапазон

    0.01Hz~2MHz(UDB1002S)
    0.01Hz~5MHz(UDB1005S)
    0.01Hz~8MHz(UDB1008S)

  • Точность частоты ±5×10-6
  • Стабильность частоты ±1×10-6
  • Время нарастания и спада прямоугольного сигнала ≤100ns
  • Коэффициент заполнения прямоугольного сигнала 1%-99%
TTL выход:
  • Частотный диапазон

    0.01Hz~2MHz(UDB1002S)
    0.01Hz ~5MHz(UDB1005S)
    0.01Hz ~8MHz(UDB1008S)

  • Амплитуда >3Vp-p
  • Нагрузочная способность >20TTL
Функция счётчика:
  • Диапазон счётчика импульсов 0~4294967295
  • Диапазон частотомера 1Hz~60MHz
  • Диапазон входных напряжений 0.5Vp-p~20Vp-p
Генератор качающей частоты (sweep_mode ):
  • Частотный диапазон fM1~fM2 (частоты предварительно устанавливаются)
  • Временной диапазон 1s~99s
Дополнительная возможность: сохранять и загружать конфигурации M0~M9 (по умолчанию M0)

Что касается генератора качающей частоты , для его настройки необходимо задать два значения частоты и время, за которое частота генератора изменится от fM1 до fM2 . Это очень удобно если надо узнать как реагирует схема на разные частоты, например, с помощью генератора качающей частоты можно легко найти резонансную частоту контура с неизвестными элементами. Для этого через последовательно включённый резистор номиналом несколько сотен Ом подключаем генератор к контуру, а щупом осциллографа к выводам контура. Если контур последовательный, то на резонансной частоте амплитуда колебаний будет максимальна, а если параллельный - минимальна. Фиксируя амплитуду на экране осциллографа можно узнать резонансную частоту контура.

Но не буду отходить от темы, ниже приведу несколько осциллограмм для разных видов колебаний и разных частот.
Синус 1КHz


Синус 10КHz


Синус 100КHz


Синус 1МHz


Синус 5МHz

Пила 1КHz


Пила 10КHz


Пила 100КHz


Пила 1МHz


Пила 5МHz


Еще можно изменять наклон пилы


Меандр 1КHz


Меандр 10КHz


Меандр 100КHz


Меандр 1МHz


Меандр 5МHz

Меандр 100KHz с TTL выхода


Меандр 1МHz с TTL выхода


Меандр 5МHz с TTL выхода

На осциллограммах видно, что стабильность частоты сильно отличается от заявленной, также хотелось отметить, что если частота прямоугольного сигнала превышает 1MHz, сигнал начинает сильно дрожать.
Сигнал для проверки частотомера взял с калибратора осциллографа, по паспортным данным на его выходе должен быть меандр с частотой 1KHz, частотомер показал ровно 1KHz. Режим счётчика импульсов не тестировал.

Всё вышеперечисленное можно отнести к плюсам, ну а чего можно хотеть от генератора сигналов за 30$? А теперь минусы, их всего два за то какие.....
В общем, в этом генераторе присутствует импульсная система питания, которая очень шумит. На осциллограмме ниже видно, что происходит на выходе генератора в отсутсвие сигнала.


но это мелочь по сравнению с регулировкой амплитуды, при вращении ручки регулировки амплитуды, последняя изменяется скачками, поэтому выставить нужную амплитуду с погрешность 100mV очень сложно .

Быстрый поиск на ютубе по запросу «генератор сигналов с али» показал, что генератора сигналов, у которого можно точно выставить амплитуду стоит, гораздо дороже, поэтому по соотношению цена-возможности этот генератор вне конкуренции.
Генератор покупал .

DDS генератор, или генератор Прямого Цифрового Синтеза в настоящее время уже далеко не новинка. На просторах интернета представлено большое количество схем, преимущественно на микроконтроллерах AVR. В качестве ЦАП-а в основном выступает R-2R матрица, но присутствуют конструкции и на микросхеме AD9850 (к слову, низкой стоимостью они не отличаются). Но к сожалению (или у счастью?), в них не было нужного мне: небольшие размеры и низкая стоимость. Как итог, была разработана данная схема.

В данной статье я хочу представить DDS генератор, выполненный на микроконтроллере ATmega8. Для отображения информации используется графический LCD LPH8731-3C. Данное устройство позволяет получить периодичный сигнал с произвольной формой (разрешение 100 точек) и заданной амплитудой.

Технические характеристики:

  • Напряжение питания: 5В
  • Потребляемый ток: <100мА
  • Мин. выходное напряжение: 0.5В
  • Макс. выходное напряжение: 2,5В
  • Шаг установки напряжения: 0,5В
  • Мин. частота сигнала: 10Гц
  • Макс. частота сигнала: 2кГц (10кГц)
  • Шаг установки частоты: 10Гц (100Гц)
  • Количество предустановленных сигналов: 8
  • Отображение данных: графический ЖКИ
  • Возможность добавления формы сигнала "на ходу" (без перепрошивки): отсутствует
  • Яркость подсветки: регулируется, необходима перепрошивка
  • Макс. количество форм в памяти: не менее 20

Схема устройства представлена ниже:

Основа схемы, как уже упоминалось, микроконтроллер ATmega8-16AU. Индекс "...16" необходим, так как в схеме применен кварцевый резонатор на 16МГц. ЦАП выполнен на R-2R матрице. Данный ход позволяет избежать применения специальных микросхем, но к сожалению, не позволяет добиться реального разрешения ЦАП выше 10 .. 12бит (в любительских условиях). К выходу матрицы через резистивный делитель напряжения (R17, RV1) подключен операционный усилитель, включенный по схеме повторителя и служит для усиления тока.

Управление устройством осуществляется посредством кнопок. На переднюю панель целесообразно выносить только кнопки SB1-SB4. Кнопка SB5 играет роль "функциональной", и позволяет использовать отличные от "основных" действия для кнопок SB1-SB4. Переключатель SA1 включает/выключает "генерацию" и кнопки управления соответственно. В первом его положении включено управление и отключено генерирование сигнала, а в другом ситуация диаметрально противоположна первому. Разъем J2 можно не разводить на плате, так как он предназначен лишь для подачи на плату питания на время программирования микроконтроллера (но придется цепляться напрямую к дорожкам).

Печатная плата устройства выполнена на двухстороннем фольгированном материале и имеет размеры (_ х _). Основная сложность при ее изготовлении - разводка дорожек для посадки микроконтроллера, но если у вас есть опыт изготовления подобных плат и/или возможность использовать фоторезист/ЛУТ, то проблем при изготовлении быть не должно.

При сборке устройства настоятельно рекомендую проверить, хорошо ли пропаяны переходные отверстия а так же надежность контакта ножек микроконтроллера и дорожек печатной платы. Я пропустил всего 1 непропай ножки микроконтроллера, и в результате на поиски проблемы ушло пару дней.

Прошивка

Прошивка для микроконтроллера была написана в . Для заливки.hex файла использовался программатор и софт . Скриншот с примером выставления fuse-битов представлен ниже. Так как на печатной плате специальный разъем для программирования не предусматривался, то для прошивки микроконтроллера придется временно припаяться к соответствующим дорожкам (пины микроконтроллера "MISO", "MOSI", "SCK", "RESET").

Сборка и компоновка устройства

При помещении устройства в корпус, желательно установить кнопку SB5 на боковой его грани. Выключатель SA1 в моем варианте находился на нижнем торце, как и разъем для подключения нагрузки. Разъем USB установлен в верхней части корпуса потому, что в планах было использование DC-DC преобразователя 3.7 -> 5В. Но так как хотелось универсальности, решил сделать этот блок съемным.

Возможная замена элементов

Микроконтроллер можно использовать только ATmega8-16AU. Операционный усилитель LM358 аналогичным (к примеру, NE532, OP04, OP221, OP290, ...) в корпусе SO-8, и про возможное несоответствие выводов забывать не стоит. Транзистор Q1 можно взять любой маломощный n-p-n, к примеру отечественный КТ315 или КТ3102. Резисторы R1-R16 желательно брать с минимальный допуском (0,5...1%), но пойдут и более распространенные 2...5% (но тут форма сигнала может быть немного хуже). Причем, желательно взять резисторы одного номинала (пусть будет 10кОм), и потом там где требуется 2R ставить 10кОм, а где R - 2х10кОм параллельно. Конденсаторы C1, C2 желательно брать в диапазоне 22...33пФ. Кварцевый резонатор использован низкопрофильный, на частоту 16МГц. Резистор RV1 - многооборотный. Стабилитрон можно ставить только на 3.3В.

LCD дисплей можно использовать только с желтой подложкой и надписью "LPH8731-3C". Он встречается в мобильных телефонах Siemens A60, A65 и др. и имеет разрешение 101x80 пикселей.

Настройка

Правильно собранное устройство в наладке не нуждается, и должно работать сразу после сборки и прошивки контроллера. Если этого не произошло, то проверьте на короткое дорожки на печатной плате, правильность подключения LCD дисплея, целостность проводов от переключателя SA1 а так же исправность стабилитрона и источника питания/кабеля USB.

При успешном первом включении, необходимо с помощью осциллографа и подстроечного резистора RV1 настроить уровень выходного сигнала согласно установкам на дисплее.

Назначение кнопок: SB1 - "Влево" (Вых. напряжение меньше), SB2 - "Вправо" (Вых. напряжение больше), SB3 - "Частота +10" (Частота +100), SB4 - "Частота -10" (Частота -100) <-- SB5 - Отжата (Нажата).

Фото и видео устройства:


На двух фото ниже видно, как можно получить большую частоту, нежели 2кГц. Но приходится качеством сигнала (для прямоугольных не принципиально).



Осциллограммы сигналов, полученных с помощью данного устройства:





Внешний вид собранного устройства:


Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATmega8A-AU

1 В блокнот
U2 Операционный усилитель

LM358

1 Корпус SO-8 (LM358D)) В блокнот
Q1 Биполярный транзистор

BC547

1 В блокнот
D1 Стабилитрон

BZX55C3V3

1 В блокнот
RV1 Подстроечный резистор 220 кОм 1 В блокнот
R1-R9 Резистор

2.2 кОм

9 0805, 1% В блокнот
R10-R16, R32 Резистор

1.1 кОм

8 0805, 1% В блокнот
R17 Резистор

100 кОм

1 0805 В блокнот
R19-R23 Резистор

5.6 кОм

5 0805 В блокнот
R24-28, R18 Резистор

10 кОм

5 0805 В блокнот
R29, R30 Резистор

220 Ом

2 0805 В блокнот
R31 Резистор

75 Ом

1 0805 В блокнот
R33 Резистор

510 Ом

1 0805 В блокнот
C1, C2 Конденсатор 27 пФ 2 0805

Продолжая тему электронных конструкторов я хочу и в этот раз рассказать о одном из устройств для пополнения арсенала измерительных приборов начинающего радиолюбителя.
Правда измерительным это устройство не назовешь, но то что оно помогает при измерениях это однозначно.

Довольно часто радиолюбителю, да и не только, приходится сталкиваться с необходимостью проверки разных электронных устройств. Это бывает как на этапе отладки, так и на этапе ремонта.
Для проверки бывает необходимо проследить прохождение сигнала по разным цепям устройства, но само устройство не всегда позволяет это сделать без внешних источников сигнала.
Например при настройке/проверке многокаскадного НЧ усилителя мощности.

Для начала стоит немного объяснить о чем пойдет речь в данном обзоре.
Рассказать я хочу о конструкторе, позволяющим собрать генератор сигналов.

Генераторы бывают разные, например ниже тоже генераторы:)

Но собирать мы будем генератор сигналов. Я много лет пользуюсь стареньким аналоговым генератором. В плане генерации синусоидальных сигналов он очень хорош, диапазон частот 10-100000Гц, но имеет большие габариты и не умеет выдавать сигналы других форм.
В данном случае же собирать будем DDS генератор сигналов.
DDS это или на русском - схема прямого цифрового синтеза.
Данное устройство может формировать сигналы произвольной формы и частоты используя в качестве задающего внутренний генератор с одной частотой.
Преимущества данного типа генераторов в том, что можно иметь большой диапазон перестройки с очень мелким шагом и при необходимости иметь возможность формирования сигналов сложных форм.

Как всегда, для начала, немного об упаковке.
Помимо стандартной упаковки, конструктор был упакован в белый плотный конверт.
Все компоненты сами находились в антистатическом пакете с защелкой (довольно полезная в хозяйстве радиолюбителя вещь:))

Внутри упаковки компоненты были просто насыпом, и при распаковке выглядели примерно так.

Дисплей был обернут пупырчатым полиэтиленом. Примерно с год назад я уже делал такого дисплея с применением, потому останавливаться на нем не буду, скажу лишь что доехал он без происшествий.
В комплекте также присутствовали два BNC разъема, но более простой конструкции чем в обзоре осциллографа.

Отдельно на небольшом кусочке вспененного полиэтилена были микросхемы и панельки для них.
В устройстве применен микроконтроллер ATmega16 фирмы Atmel.
Иногда люди путают названия, называя микроконтроллер процессором. На самом деле это разные вещи.
Процессор это по сути просто вычислитель, микроконтроллер же в своем составе содержит кроме процессора ОЗУ и ПЗУ, и также могут присутствовать различные периферийные устройства, ЦАП, АЦП, ШИМ контроллер, компараторы и т.п.

Вторая микросхема - Сдвоенный операционный усилитель LM358. Самый обычный, массовый, операционный усилитель.

Сначала разложим весь комплект и посмотрим что же нам дали.
Печатная плата
Дисплей 1602
Два BNC разъема
Два переменных резистора и один подстроечный
Кварцевый резонатор
Резисторы и конденсаторы
Микросхемы
Шесть кнопок
Разные разъемы и крепеж

Печатная плата с двухсторонней печатью, на верхней стороне нанесена маркировка элементов.
Так как принципиальная схема в комплект не входит, то на плату нанесены не позиционные обозначения элементов, а их номиналы. Т.е. все собрать можно и без схемы.

Металлизация выполнена качественно, замечаний у меня не возникло, покрытие контактных площадок отличное, паяется легко.

Переходы между сторонами печати сделаны двойными.
Почему сделано именно так, а не как обычно, я не знаю, но это только добавляет надежности.

Сначала по печатной плате я начал чертить принципиальную схему. Но уже в процессе работы я подумал, что наверняка при создании данного конструктора использовалась какая нибудь уже известная схема.
Так и оказалось, поиск в интернет вывел меня на данного устройства.
По ссылке можно найти, схему, печатную плату и исходники с прошивкой.
Но я все равно решил дочертить схему в именно том виде как она есть и могу сказать, что она на 100% соответствует исходному варианту. Разработчики конструктора просто разработали свой вариант печатной платы. Это означает, что если существуют альтернативные прошивки данного прибора, то они будут работать и здесь.
Есть замечание к схемотехнике, выход HS взят прямо с вывода процессора, никаких защит нет, потому есть шанс случайно сжечь этот выход:(

Раз уж рассказывать, то стоит описать функциональные узлы данной схемы и расписать некоторые из них более расширенно.
Я сделал цветной вариант принципиальной схемы, на котором цветом выделил основные узлы.
Мне тяжело подобрать названия цветам, потом буду описывать как смогу:)
Фиолетовый слева - узел первоначального сброса и принудительного при помощи кнопки.
При подаче питания конденсатор С1 разряжен, благодаря чему на выводе Сброс процессора будет низкий уровень, по мере заряда конденсатора через резистор R14 напряжение на входе Сброс поднимется и процессор начнет работу.
Зеленый - Кнопки переключения режимов работы
Светло фиолетовый? - Дисплей 1602, резистор ограничения тока подсветки и подстроечный резистор регулировки контрастности.
Красный - узел усилителя сигнала и регулировки сдвига относительно нуля (ближе к концу обзора показано что он делает)
Синий - ЦАП. Цифро Аналоговый Преобразователь. Собран ЦАП по схеме , это один из самых простых вариантов ЦАП. В данном случае применен 8 бит ЦАП, так как используются все выводы одного порта микроконтроллера. Изменяя код на выводах процессора можно получить 256 уровней напряжения (8 бит). Состоит данный ЦАП из набора резисторов двух номиналов, отличающихся друг от друга в 2 раза, от этого и пошло название, состоящее из двух частей R и 2R.
Преимущества такого решения - большая скорость при копеечной стоимости, резисторы лучше применять точные. Мы с товарищем применяли такой принцип но для АЦП, выбор точных резисторов был невелик, потому мы использовали немного другой принцип, ставили все резисторы одного номинала, но там где надо 2R, применяли 2 последовательно включенных резистора.
Такой принцип Цифро аналогового преобразования был в одной из первых «звуковых карт» - . Там была также R2R матрица, подключаемая к LPT порту.
Как я выше писал, в данном конструкторе ЦАП имеет разрешение 8 бит, или 256 уровней сигнала, для простого прибора этого более чем достаточно.

На странице автора кроме схемы, прошивки и т.п. обнаружилась блок-схема данного прибора.
По ней более понятная связ узлов.

С основной частью описания закончили, расширенная будет далее по тексту, а мы перейдем непосредственно к сборке.
Как и в прошлых примерах начать я решил с резисторов.
В данном конструкторе резисторов много, но номиналов всего несколько.
Основное количество резисторов имеют всего два номинала, 20к и 10к и почти все задействованы в R2R матрице.
Чтобы немного облегчить сборку, скажу что можно даже не определять их сопротивелние, просто 20к резисторов 9 штук, а 10к резисторов соответственно 8:)

В этот раз я применил несколько другую технологию монтажа. мне она нравится меньше, чем предыдущие, но также имеет право на жизнь. Такая технология в некоторых случаяюх ускоряет монтаж, особенно на большом количестве одинаковых элементов.
В данном случае выводы резисторов формуются также как и раньше, после этого на плату устанавливается сначала все резисторы одного номинала, потом второго, получаются две такие линейки компонентов.

С обратной стороны выводы немного загибаются, но несильно, главное чтобы элементы не выпали, и плата кладется на стол выводами вверх.

Дальше берем припой в одну руку, паяльник в другую и пропаиваем все заполненные контактные площадки.
Сильно усердствовать с количеством компонентов не стоит, так как если набить так сразу всю плату, то в этом «лесу» можно и заблудиться:)

В конце обкусываем торчащие выводы компонентов впритык к припою. Бокорезами можно захватывать сразу несколько выводов (4-5-6 штук за один раз).
Лично я такой способ монтажа не очень приветствую и показал его просто ради демонстрации различных вариантов сборки.
Из недостатков такого способа:
После обрезки получаются острые торчащие кончики
Если компоненты стоят не в ряд, то легко получается каша из выводов, где все начинает путаться и это только тормозит работу.

Из достоинств:
Высокая скорость монтажа однотипных компонентов установленных в один - два ряда
Так как выводы сильно не загибаются, то облегчается демонтаж компонента.

Такой способ монтажа можно часто встретить в дешевых компьютерных блоках питания, правда там выводы не обкусывают, а срезают чем то типа режущего диска.

После монтажа основного количества резисторов у нас останется несколько штук разного номинала.
С парой понятно, это два резистора 100к.
Три последних резистора это -
коричневый - красный - черный - красный - коричневый - 12к
красный - красный - черный - черный - коричневый - 220 Ом.
коричневый - черный - черный - черный - коричневый - 100 Ом.

Запаиваем последние резисторы, плата после этого должна выглядеть примерно так.

Резисторы с цветовой маркировкой вещь хорошая, но иногда возникает путаница с тем, откуда считать начало маркировки.
И если с резисторами, где маркировка состоит из четырех полосок, проблем обычно не возникает, так как последняя полоска чаще либо серебряная либо золотая, то с резисторами где маркировка из пяти полос, могут возникнуть проблемы.
Дело в том, что последняя полоса может иметь цвет как у полосок означающих номинал.

Для облегчения распознавания маркировки, последняя полоса должна отстоять от остальных, но это в идеальном случае. В реальной же жизни все бывает совсем не так как задумывалось и полоски идут в ряд на одном расстоянии друг от друга.
К сожалению в таком случае помочь может либо мультиметр, либо просто логика (в случае сборки устройства из набора), когда просто убираются все известные номиналы, а уже по оставшимся можно понять что за номинал перед нами.
Для примера пара фото вариантов маркировки резисторов в этом наборе.
1. На двух соседних резисторов попалась «зеркальная» маркировка, где не имеет значения откуда читать номинал:)
2. Резисторы на 100к, видно что последняя полоска стоит чуть дальше от основных (на обоих фото номинал читается слева - направо).

Ладно, с резисторами и их сложностями в маркировке закончили, перейдем к более простым вещам.
Конденсаторов в этом наборе всего четыре, при этом они парные, т.е. всего два номинала по две штуки каждого.
Также в комплекте дали кварцевый резонатор на 16 МГц.

О конденсаторах и кварцевом резонаторе я рассказывал в прошлом обзоре, потому просто покажу куда они должны устанавливаться.
Видимо изначально все конденсаторы задумывались одного типа, но конденсаторы на 22 пФ заменили небольшими дисковыми. Дело в том, что место на плате рассчитано под расстояние между выводами 5мм, а мелкие дисковые имеют всего 2.5мм, потому придется выводы им немного разогнуть. Разгибать придется около корпуса (благо выводы мягкие), так как из-за того что над ними стоит процессор, то необходимо получить минимальную высоту над платой.

В комплекте к микросхемам дали пару панелек и несколько разъемов.
На следующем этапе они нам и понадобятся, а кроме них возьмем длинный разъем (мама) и четырехконтактного «папу» (на фото не попал).

Панельки для установки микросхем дали самые обычные, хотя если сравнивать с панельками времен СССР, то шик.
На самом деле, как показывает практика, такие панельки в реальной жизни служат дольше самого прибора.
На панельках присутствует ключ, небольшой вырез на одной из коротких сторон. Собственно самой панельке все равно как вы ее поставите, просто потом по вырезу удобнее ориентироваться при установке микросхем.

При установке панелек устанавливаем их также как сделано обозначение на печатной плате.

После установки панелек плата начинает приобретать некоторый вид.

Управление прибором производится при помощи шести кнопок и двух переменных резисторов.
В оригинале прибора использовалось пять кнопок, шестую добавил разработчик конструктора, она выполняет функцию сброса. Если честно, то я не совсем понимаю пока ее смысл в реальном применении так как за все время тестов она мне ни разу не понадобилась.

Выше я писал что в комплекте дали два переменных резистора, также в комплекте еще был подстроечный резистор. Немного расскажу про эти компоненты.
Переменные резисторы предназначены для оперативного изменения сопротивления, кроме номинала имеют еще маркировку функциональной характеристики.
Функциональная характеристика это то, как будет меняться сопротивление резистора при повороте ручки.
Существует три основные характеристики:
А (в импортном варианте В) - линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) - логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) - обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип - W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении. Если есть сомнения, то лучше искать дополнительную информацию на сайте.
В комплекте к конструктору дали два переменных резистора, причем маркировку имел только один:(

Также в комплекте был один подстроечный резистор. по своей сути это то же самое что переменный, только он не рассчитан на оперативную регулировку, а скорее - подстроил и забыл.
Такие резисторы обычно имеют шлиц под отвертку, а не ручку, и только линейную характеристику изменения сопротивления (по крайней мере другие мне не попадались).

Запаиваем резисторы и кнопки и переходим к BNC разъемам.
Если планируется использовать устройство в корпусе, то возможно стоит купить кнопки с более длинным штоком, чтобы не наращивать те, что дали в комплекте, так будет удобнее.
А вот переменные резисторы я бы вынес на проводах, так как расстояние между ними очень маленькое и пользоваться в таком виде будет неудобно.

BNC разъемы хоть и попроще, чем в обзоре осциллографа, но мне понравились больше.
Ключевое - их легче паять, что немаловажно для начинающего.
Но появилось и замечание, конструкторы так близко поставили разъемы на плате, что закрутить две гайки невозможно в принципе, всегда одна будет сверху другой.
Вообще в реальной жизни редко когда необходимы оба разъема сразу, но если бы конструкторы раздвинули их хотя бы на пару миллиметров, то было бы гораздо лучше.

Собственно пайка основной платы завершена, теперь можно установить на свое место операционный усилитель и микроконтроллер.

Перед установкой я обычно немного изгибаю выводы так, чтобы они были ближе к центру микросхемы. Делается это очень просто, берется микросхема двумя руками за короткие стороны и прижимается вертикально стороной с выводами к ровному основанию, например к столу. Изгибать выводы надо не очень много, тут скорее дело привычки, но устанавливать в панельку потом микросхему гораздо удобнее.
При установке смотрим чтобы выводы случайно не загнулись внутрь, под микросхему, так как при отгибании обратно они могут отломиться.

Микросхемы устанавливаем в соответствии ключом на панельке, которая в свою очередь установлена в соответствии с маркировкой на плате.

Закончив с платой переходим к дисплею.
В комплекте дали штыревую часть разъема, который необходимо припаять.
после установки разъема я сначала припаиваю один крайний вывод, не важно красиво он припаян или нет, главное добиться того, чтобы разъем стоял плотно и перпендикулярно плоскости платы. Если необходимо, то прогреваем место пайки и подравниваем разъем.
После выравнивания разъема пропаиваем остальные контакты.

Все, можно промывать плату. В этот раз я это решил сделать до проверки, хотя обычно советую делать промывку уже после первого включения, так как иногда приходится еще что нибудь паять.
Но как показала практика, с конструкторами все гораздо проще и после сборки паять приходится редко.

Промывать можно разными способами и средствами, кто то использует спирт, кто то спирто-бензиновую смесь, я мою платы ацетоном, по крайней мере пока могу его купить.
Уже когда промыл, то вспомнил совет из предыдущего обзора по поводу щетки, так как я пользуюсь ваткой. Ничего, придется перенести эксперимент на следующий раз.

У меня в работе вработалась привычка после промывки платы покрывать ее защитным лаком, обычно снизу, так как попадание лака на разъемы недопустимо.
В работе я использую лак Пластик 70.
Данный лак очень «легкий», т.е. он при необходимости смывается ацетоном и пропаивается паяльником. Есть еще хороший лак Уретан, но с ним все заметно сложнее, он прочнее и паяльником пропаять его гораздо труднее. ТАкой лак используется для тяжелых условий эксплуатации и тогда, когда есть уверенность в том, что плату паять больше не будем, хотя бы какое то длительное время.

После покрытия лаком плата становится более глянцевой и приятной на ощупь, возникает некоторое ощущение законченности процесса:)
Жалко фото не передает общую картину.
Меня иногда смешили слова людей типа - этот магнитофон/телевизор/приемник ремонтировали, вон видно следы пайки:)
При хорошей и правильной пайке следов ремонта нет. Только специалист сможет понять, ремонтировали устройство или нет.

Пришла очередь установки дисплея. Для этого в комплекте дали четыре винтика М3 и две монтажные стойки.
Дисплей крепится только со стороны обратной разъему, так как со стороны разъема он держится собственно за сам разъем.

Устанавливаем стойки на основную плату, затем устанавливаем дисплей, ну и в конце фиксируем всю эту конструкцию при помощи двух оставшихся винтиков.
понравилось то, что даже отверстия совпали с завидной точностью, причем без подгонки, просто вставил и вкрутил винтики:).

Ну все, можно пробовать.
Подаю 5 Вольт на соответствующие контакты разъема и…
И ничего не происходит, только включается подсветка.
Не стоит пугаться и сразу искать решение на форумах, все нормально, так и должно быть.
Вспоминаем что на плате есть подстроечный резистор и он там не зря:)
Данным подстроечным резистором надо отрегулировать контрастность дисплея, а так как он изначально стоял в среднем положении, то вполне закономерно, что мы ничего не увидели.
Берем отвертку и вращаем этот резистор добиваясь нормального изображения на экране.
Если сильно перекрутить, то будет переконтраст, мы увидим все знакоместа сразу, а активные сегменты будут еле просматриваться, в этом случае просто крутим резистор в обратную сторону пока неактивные элементы не сойдут почти на нет.
Можно отрегулировать так, что неактивные элементы вообще не будут видны, но я обычно оставляю их еле заметными.

Дальше мне бы перейти к тестированию, да не тут то было.
Когда я получил плату, то первым делом заметил, что помимо 5 Вольт ей надо +12 и -12, т.е. всего три напряжения. Я прям вспомнил РК86, где надо было +5, +12 и -5 Вольт, причем подавать их надо было в определенной последовательности.

Если с 5 Вольт проблем не было, да и с +12 Вольт также, то -12 Вольт стали небольшой проблемой. Пришлось сделать небольшой временный блок питания.
Ну в процессе была классика, поиск по сусекам того из чего можно его собрать, трассировка и изготовление платы.

Так как трансформатор у меня был только с одной обмоткой, а импульсник городить не хотелось, то я решил собирать БП по схеме с удвоением напряжения.
Скажу честно, это далеко не самый лучший вариант, так как такая схема имеет довольно высокий уровень пульсаций, а запаса по напряжению, чтобы стабилизаторы могли его полноценно фильтровать у меня было совсем впритык.
Сверху та схема по которой делать более правильно, снизу та, по которой делал я.
Отличие между ними в дополнительной обмотке трансформатора и двух диодах.

Я поставил также почти без запаса. Но при этом он достаточен при нормально сетевом напряжении.
Я бы рекомендовал применить трансформатор как минимум на 2 ВА, а лучше на 3-4ВА и имеющий две обмотки по 15 Вольт.
Кстати потребление платы небольшое, по 5 Вольт вместе с подсветкой ток составляет всего 35-38мА, по 12 Вольт ток потребления еще меньше, но зависит от нагрузки.

В итоге у меня вышла небольшая платка, по размерам чуть больше спичечного коробка, в основном в высоту.

Разводка платы на первый взгляд может показаться несколько странной, так как можно было повернуть трансформатор на 180 градусов и получить более аккуратную разводку, я так сначала и сделал.
Но в таком варианте выходило, что дорожки с сетевым напряжением оказывались в опасной близости от основной платы прибора и я решил немного изменить разводку. не скажу что стало отлично, но по крайней мере так хоть немного безопаснее.
Можно убрать место под предохранитель, так как с примененным трансформатором в нем нет особой нужды, тогда будет еще лучше.

Так выглядит полный комплект прибора. для соединения БП с платой прибора я спаял небольшой жесткий соединитель 4х4 контакта.

Плата БП подключается при помощи соединителя к основной плате и теперь можно переходить к описанию работы прибора и тестированию. Сборка на этом этапе окончена.
Можно было конечно поставить все это в корпус, но для меня такой прибор скорее вспомогательный, так как я уже смотрю в сторону более сложных DDS генераторов, но и стоимость их не всегда подойдет новичку, потому я решил оставить как есть.

Перед началом тестирования опишу органы управления и возможности устройства.
На плате есть 5 кнопок управления и кнопка сброса.
Но по поводу кнопки сброса думаю все понятно и так, а остальные я опишу более подробно.
Стоит отметить небольшой «дребезг» при переключении правой/левой кнопки, возможно программный «антидребезг» имеет слишком маленькое время, проявляется в основном только в режиме выбора частоты выхода в режиме HS и шага перестройки частоты, в остальных режимах проблем не замечено.
Кнопки вверх и вниз переключают режимы работы прибора.
1. Синусоидальный
2. Прямоугольный
3. Пилообразный
4. Обратный пилообразный

1. Треугольный
2. Высокочастотный выход (отдельный разъем HS, остальные формы приведены для выхода DDS)
3. Шумоподобный (генерируется случайным перебором комбинаций на выходе ЦАП)
4. Эмуляция сигнала кардиограммы (как пример того, что генерировать можно любые формы сигналов)

1-2. Изменять частоту на выходе DDS можно в диапазоне 1-65535ГЦ с шагом 1Гц
3-4. Отдельно есть пункт, позволяющий выбрать шаг перестройки, по умолчанию включается шаг 100Гц.
Изменять частоту работы и режимы можно только в режиме, когда генерация выключена., изменение происходит при помощи кнопок влево/вправо.
Включается генерация кнопкой START.

Также на плате расположены два переменных резистора.
Один из них регулирует амплитуду сигнала, второй - смещение.
На осциллограммах я попытался показать как это выглядит.
Верхние две - изменение уровня выходного сигнала, нижние - регулировка смещения.

Дальше пойдут результаты тестов.
Все сигналы (кроме шумоподобного и ВЧ) проверялись на четырех частотах:
1. 1000Гц
2. 5000Гц
3. 10000Гц
4. 20000Гц.
На частотах выше был большой завал потому эти осциллограммы приводить не имеет особого смысла.
Для начала синусоидальный сигнал.

Пилообразный

Обратный пилообразный

Треугольный

Прямоугольный с выхода DDS

Кардиограмма

Прямоугольный с ВЧ выхода
Здесь предоставляется выбор только из четырех частот, их я и проверил
1. 1МГц
2. 2МГц
3. 4МГц
4. 8МГц

Шумоподобный в двух режимах развертки осциллографа, чтобы было более понятно что он из себя представляет.

Как показало тестирование, сигналы имеют довольно искаженную форму начиная примерно с 10КГц. Сначала я грешил на упрощенный ЦАП, да и на саму простоту реализации синтеза, но захотелось проверить более тщательно.
Для проверки я подключился осциллографом прямо на выход ЦАП и установил максимально возможную частоту синтезатора, 65535Гц.
Здесь картина получше, особенно с учетом того, что генератор работал на максимальной частоте. Подозреваю что виной простая схема усиления, так как до ОУ сигнал заметно «красивее».

Ну и групповое фото небольшого «стенда» начинающего радиолюбителя:)

Резюме.
Плюсы
Качественное изготовление платы.
Все компоненты были в наличии
Никаких сложностей при сборке не возникло.
Большие функциональные возможности

Минусы
BNC разъемы стоят слишком близко друг к другу
Нет защиты по выходу HS.

Мое мнение. Можно конечно сказать что характеристики прибора совсем плохие, но стоит учитывать то, что это DDS генератор самого начального уровня и не совсем правильно было бы ожидать от него чего то большего. Порадовала качественная плата, собирать было одно удовольствие, не было ни одного места, которое пришлось «допиливать». В виду того, что прибор собран по довольно известной схеме, есть надежда на альтернативные прошивки, которые могут увеличить функционал. С учетом всех плюсов и минусов я вполне могу рекомендовать этот набор как стартовый для начинающих радиолюбителей.

Фух, вроде все, если накосячил где то, пишите, исправлю/дополню:)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +47 Добавить в избранное Обзор понравился +60 +126

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 3.

Доброго дня уважаемые радиолюбители! На сегодняшнем занятии в Школе начинающего радиолюбителя мы закончим собирать функциональный генератор . Сегодня мы соберем печатную плату, припаяем все навесные детали, проверим работоспособность генератора и проведем его настройку с помощью специальной программы.

И так, представляю вам окончательный вариант моей печатной платы выполненной в программе, которую мы рассматривали на втором занятии – Sprint Layout :

Если вы не смогли сделать свой вариант платы (что-то не получилось, или было просто лень, к сожалению), то можете воспользоваться моим “шедевром”. Плата получилась размером 9х5,5 см и содержит две перемычки (две линии синего цвета). Здесь вы можете скачать этот вариант платы в формате Sprint Laiout^

(63.6 KiB, 3,488 hits)

После применения лазерно-утюжной технологии и травления, получилась такая заготовка:

Дорожки на этой плате выполнены шириной 0,8 мм, почти все контактные площадки диаметром 1,5 мм и почти все отверстия – сверлом 0,7 мм. Я думаю, что вам будет не очень сложно разобраться в этой плате, и так-же, в зависимости от используемых деталей (особенно подстроечные сопротивления), внести свои изменения. Сразу хочу сказать, что эта плата проверенна и при правильной пайке деталей схема начинает работать сразу.

Немного о функциональности и красоте платы. Беря в руки плату, изготовленную в заводских условиях, вы наверняка замечали как она удобно подготовлена для пайки деталей – и сверху и снизу нанесена белым цветом так называемая “шелкография”, на которой сразу видны и наименование деталей и их посадочные места, что очень облегчает жизнь при пайке радиоэлементов. Видя посадочное место радиоэлемента, никогда не ошибешься в какие отверстия его вставлять, остается только глянуть на схему, выбрать нужную деталь, вставить ее и припаять. Поэтому мы сегодня сделаем плату приближенную к заводской, т.е. нанесем шелкографию на слой со стороны деталей. Единственное, эта “шелкография” будет черного цвета. Процесс очень прост. Если, к примеру, мы пользуемся программой Sprint Layout, то выбираем при печати слой К1 (слой со стороны деталей), распечатываем его как и для самой платы (но только в зеркальном отображении), накладываем отпечаток на сторону платы, где нет фольги (со стороны деталей), центрируем его (а на просвет протравленной платы рисунок виден прилично) и применяя способ ЛУТ переносим тонер на текстолит. Процесс – как и при переносе тонера на медь, и любуемся результатом:

После высверливания отверстий, вы реально будете видеть схему расположения деталей на плате. А самое главное, что это не только для красоты платы (хотя, как я уже говорил, красивая плата – это залог хорошей и долгой работы собранной вами схемы), а главное – для облегчения дальнейшей пайки схемы. Затраченные десять минут на нанесение “шелкографии” заметно окупаются по времени при сборке схемы. Некоторые радиолюбители, после подготовки платы к пайке и нанесения такой “шелкографии”, покрывают слой со стороны деталей лаком, тем самым защищая “шелкографию” от стирания. Хочу отметить, что тонер на текстолите держится очень хорошо, а после пайки деталей вам придется растворителем удалять остатки канифоли с платы. Попадание растворителя на “шелкографию”, покрытую лаком, приводит к появлению белого налета, при удалении которого сходит и сама “шелкография” (это хорошо видно на фотографии, именно так я и делал), поэтому, я считаю, что использовать лак не обязательно. Кстати, все надписи, контура деталей выполнены при толщине линий 0,2 мм, и как видите, все это прекрасно переноситься на текстолит.

А вот так выглядит моя плата (без перемычек и навесных деталей):

Эта плата выглядела бы намного лучше, если бы я не покрывал ее лаком. Но а вы можете как всегда поэкспериментировать, и естественно, сделать лучше. Кроме того, у меня на плате установлены два конденсатора С4, нужного номинала (0,22 мкФ) у меня не оказалось и я заменил его двумя конденсаторами номиналом 0,1 мкФ соединив их параллельно.

Продолжаем. После того, как мы припаяли все детали на плату, припаиваем две перемычки, припаиваем с помощью отрезков монтажных проводов резисторы R7 и R10, переключатель S2. Переключатель S1 пока не припаиваем а делаем перемычку из провода, соединяя выводы 10 микросхемы ICL8038 и конденсатора С3 (т.е. подключаем диапазон 0,7 – 7 кГц), подаем питание с нашего (я надеюсь собранного) лабораторного блока питания на входы микросхемных стабилизаторов около 15 вольт постоянного напряжения

Теперь мы готовы к проверке и настройке нашего генератора. Как проверить работоспособность генератора. Очень просто. Подпаиваем к к выходам Х1 (1:1) и “общий” любой обыкновенный или пьезокерамический динамик (к примеру от китайских часов в будильнике). При подключении питания мы услышим звуковой сигнал. При изменении сопротивления R10 мы услышим как изменяется тональность сигнала на выходе, а при изменении сопротивления R7 – как изменяется громкость сигнала. Если у вас этого нет, то единственная причина в неправильной пайке радиоэлементов. Обязательно пройдитесь еще раз по схеме, устраните недостатки и все будет о,кей!

Будем считать, что этот этап изготовления генератора мы прошли. Если что-то не получается, или получается, но не так, обязательно задавайте свои вопросы в комментариях или на форуме. Вместе мы решим любую проблему.

Продолжаем. Вот так выглядит плата, подготовленная к настройке:

Что мы видим на этой картинке. Питание – черный “крокодил” на общий провод, красный “крокодил” на положительный вход стабилизатора, желтый “крокодил” – на отрицательный вход стабилизатора отрицательного напряжения. Припаянные переменные сопротивления R7 и R10, а также переключатель S2. С нашего лабораторного блока питания (вот где пригодился двухполярный источник питания) мы подаем на схему напряжение около 15-16 вольт, для того, чтобы нормально работали микросхемные стабилизаторы на 12 вольт.

Подключив питание на входы стабилизаторов (15-16 вольт) с помощью тестера проверяем напряжение на выходах стабилизаторов (±12 вольт). В зависимости от используемых стабилизаторов напряжения будет отличаться от ± 12 вольт, но близки к нему. Если у вас напряжения на выходах стабилизаторов несуразные (не соответствуют тому, что надо), то причина одна – плохой контакт с “массой”. Самое интересное, что даже отсутствие надежного контакта с “землей” не мешает работе генератора на динамик.

Ну а теперь нам осталось настроить наш генератор. Настройку мы будем проводить с помощью специальной программы – виртуальный осциллограф . В сети можно найти много программ имитирующих работу осциллографа на экране компьютера. Специально для этого занятия я проверил множество таких программ и остановил свой выбор на одной, которая, как мне кажется, наиболее лучше симулирует осциллограф – Virtins Multi-Instrument . Данная программа имеет в своем составе несколько подпрограмм – это и осциллограф, частотомер, анализатор спектра, генератор, и кроме того имеется русский интерфейс:

Здесь вы можете скачать данную программу:

(41.7 MiB, 5,238 hits)

Программа проста в использовании, а для настройки нашего генератора потребуется лищь минимальное знание ее функций:

Для того чтобы настроить наш генератор нам необходимо подключиться к компьютеру через звуковую карту. Подсоединиться можно через линейный вход (есть не у всех компьютеров) или к разъему “микрофон” (есть на всех компьютерах). Для этого нам необходимо взять какие-либо старые, ненужные наушники от телефона или другого устройства, со штекером диаметром 3,5 мм, и разобрать их. После разборки припаиваем к штекеру два провода – как показано на фотографии:

После этого белый провод подпаиваем к “земле” а красный к контакту Х2 (1:10). Регулятор уровня сигнала R7 ставим в минимальное положение (обязательно, что-бы не спалить звуковую карту) и подключаем штекер к компьютеру. Запускаем программу, при этом в рабочем окне мы увидим две запущенные программы – осциллограф и анализатор спектра. Анализатор спектра отключаем, выбираем на верхней панели “мультиметр” и запускаем его. Появится окошко, которое будет показывать частоту нашего сигнала. С помощью резистора R10 устанавливаем частоту около 1 кГц, переключатель S2 ставим в положение “1” (синусоидальный сигнал). А затем, с помощью подстроечных резисторов R2, R4 и R5 настраиваем наш генератор. Сначала форму синусоидального сигнала резисторами R5 и R4, добиваясь на экране формы сигнала в виде синусоиды, а затем, переключив S2 в положение “3” (прямоугольный сигнал), резистором R2 добиваемся симметрии сигнала. Как это реально выглядит, вы можете посмотреть на коротком видео:

После проведенных действий и настройки генератора, припаиваем к нему переключатель S1 (предварительно удалив перемычку) и собираем всю конструкцию в готовом или самодельном (смотри занятие по сборке блока питания) корпусе.

Будем считать, что мы успешно со всем справились, и в нашем радиолюбительском хозяйстве появился новый прибор – функциональный генератор . Оснащать его частотомером мы пока не будем (нет подходящей схемы) а будем его использовать в таком виде, учитывая, что нужную нам частоту мы можем выставить с помощью программы Virtins Multi-Instrument . Частотомер для генератора мы будем собирать на микроконтроллере, в разделе “Микроконтроллеры”.

Следующим нашим этапом в познании и практическом претворении в жизнь радиолюбительских устройств будет сборка светомузыкальной установки на светодиодах.

При повторении данной конструкции был случай, когда не удалось добиться правильной формы прямоугольных импульсов. Почему возникла такая проблема сказать трудно, возможно из-за такой работы микросхемы. Решить проблему очень легко. Для этого необходимо применить триггер Шмитта на микросхеме К561(КР1561)ТЛ1 по нижеприведенной схеме. Данная схема позволяет преобразовывать напряжение любой формы в прямоугольные импульсы с очень хорошей формы. Схема включается в разрыв проводника, идущего от вывода 9 микросхемы, вместо конденсатора С6.

Данный DDS функциональный генератор (версия 2.0) сигналов собран на микроконтроллере AVR, обладает хорошей функциональностью, имеет амплитудный контроль, а также собран на односторонней печатной плате.

Данный генератор базируется на алгоритме DDS-генератора Jesper , программа была модернизирована под AVR-GCC C с вставками кода на ассемблере. Генератор имеет два выходных сигнала: первый - DDS сигналы, второй - высокоскоростной (1..8МГц) "прямоугольный" выход, который может использоваться для оживления МК с неправильными фузами и для других целей.
Высокоскоростной сигнал HS (High Speed) берется напрямую с микроконтроллера Atmega16 OC1A (PD5).
DDS-сигналы формируются с других выходов МК через резистивную R2R-матрицу и через микросхему LM358N, которая позволяет осуществить регулировку амплитуды (Amplitude) сигнала и смещение (Offset). Смещение и амплитуда регулируются при помощи двух потенциометров. Смещение может регулироваться в диапазоне +5В..-5В, а амплитуда 0...10В. Частота DDS-сигналов может регулироваться в пределах 0... 65534 Гц, это более чем достаточно для тестирования аудио-схем и других радиолюбительских задач.

Основные характеристики DDS-генератора V2.0:
- простая схема с распространенными и недорогими радиоэлементами;
- односторонняя печатная плата;
- встроенный блок питания;
- отдельный высокоскоростной выход (HS) до 8МГц;
- DDS-сигналы с изменяемой амплитудой и смещением;
- DDS-сигналы: синус, прямоугольник, пила и реверсивная пила, треугольник, ЭКГ-сигнал и сигнал шума;
- 2×16 LCD экран;
- интуитивная 5-ти кнопочная клавиатура;
- шаги для регулировки частоты: 1, 10, 100, 1000, 10000 Гц;
- запоминание последнего состояния после включения питания.

На представленной ниже блок-схеме, приведена логическая структура функционального генератора:

Как вы можете видеть, устройство требует наличие нескольких питающих напряжений: +5В, -12В, +12В. Напряжения +12В и -12В используются для регулирования амплитуды сигнала и смещения. Блок питания сконструирован с использованием трансформатора и нескольких микросхем стабилизаторов напряжения:

Блок питания собран на отдельной плате:

Если самому собирать блок питания нет желания, то можно использовать обычный ATX блок питания от компьютера, где уже присутствуют все необходимые напряжения. Разводка ATX разъема .

LCD-экран

Все действия отображаются через LCD-экранчик. Управление генератором осуществляется пятью клавишами

Клавиши вверх/вниз используются для перемещения по меню, клавиши влево/вправо для изменения значения частоты. Когда центральная клавиша нажата - начинается генерирование выбранного сигнала. Повторное нажатие клавиши останавливает генератор.

Для установки шага изменения частоты предусмотрено отдельное значение. Это удобно, если вам необходимо менять частоту в широких пределах.

Генератор шума не имеет каких-либо настроек. Для него используется обычная функция rand() непрерывно подающиеся на выход DDS-генератора.

Высокоскоростной выход HS имеет 4 режима частоты: 1, 2, 4 и 8 МГц.

Принципиальная схема

Схема функционального генератора простая и содержит легкодоступные элементы:
- микроконтроллер AVR Atmega16, с внешним кварцем на 16 МГц;
- стандартный HD44780-типа LCD-экранчик 2×16;
- R2R-матрица ЦАП из обычных резисторов;
- операционный усилитель LM358N (отечественный аналог КР1040УД1);
- два потенциометра;
- пять клавиш;
- несколько разъемов.

Плата:

Функциональный генератор собран в пластиковом боксе:


Программное обеспечение

Как я уже говорил выше, в основе своей программы я использовал алгоритм DDS-генератора Jesper . Я добавил несколько строчек кода на ассемблере для реализации останова генерирования. Теперь алгоритм содержит 10 ЦПУ циклов, вместо 9.

void static inline Signal_OUT(const uint8_t *signal, uint8_t ad2, uint8_t ad1, uint8_t ad0){
asm volatile("eor r18, r18 ;r18<-0″ "\n\t"
"eor r19, r19 ;r19<-0″ "\n\t"
"1:" "\n\t"
"add r18, %0 ;1 cycle" "\n\t"
"adc r19, %1 ;1 cycle" "\n\t"
"adc %A3, %2 ;1 cycle" "\n\t"
"lpm ;3 cycles" "\n\t"
"out %4, __tmp_reg__ ;1 cycle" "\n\t"
"sbis %5, 2 ;1 cycle if no skip" "\n\t"
"rjmp 1b ;2 cycles. Total 10 cycles" "\n\t"
:
:"r" (ad0),"r" (ad1),"r" (ad2),"e" (signal),"I" (_SFR_IO_ADDR(PORTA)), "I" (_SFR_IO_ADDR(SPCR))
:"r18″, "r19″
);}

Таблица форм DDS-сигналов размещена во флэш памяти МК, адрес которой начинается с 0xXX00. Эти секции определены в makefile, в соответствующих местах в памяти:
#Define sections where to store signal tables
LDFLAGS += -Wl,-section-start=.MySection1=0x3A00
LDFLAGS += -Wl,-section-start=.MySection2=0x3B00
LDFLAGS += -Wl,-section-start=.MySection3=0x3C00
LDFLAGS += -Wl,-section-start=.MySection4=0x3D00
LDFLAGS += -Wl,-section-start=.MySection5=0x3E00
LDFLAGS += -Wl,-section-start=.MySection6=0x3F00



Статьи по теме