Предохранитель - это что такое? Принцип работы предохранителей. Назначение предохранителей Для чего используют плавкие предохранители

Одним из важных компонентов токопроводящей системы, выполняющий защитную функцию является предохранитель. Данные устройства выполняются в различных конфигурациях и имеют множество моделей. Данная статья расскажет о плавком предохранителе. Каждый блок имеет свои токоведущие элементы, поэтому токопроводящий элемент принимает важное участие в стабильной работе электрических цепей. Необходимо отметить, что понятия плавкий предохранитель и плавкая вставка имеют несколько различные определения. Данная статья поможет понять это отличие.

Принцип действия

Базовая особенность предохранителя состоит в том, что его сгорание в электрической цепи происходит гораздо раньше, нежели других элементов. В случае скачка тока электрической цепи, предохранитель гораздо легче и быстрее заменить, нежели менять токоведущие провода, микросхемы и т.п.

Название плавкий данный элемент получил, поскольку основным элементом его конструкции является плавкая вставка. Этот компонент имеет низкую величину температуры плавления, по закону Джоуля-Ленца при прохождении тока через проводник в нем выделяется тепловая энергия, и предохранитель при высокой величине тока, являющейся опасной для остальных компонентов, сгорает. Это приводит к размыканию электрической цепи. Таким образом, предохранитель защищает от повреждения остальные элементы электрической схемы.

Режимы работы плавкого предохранителя:

  • Короткое замыкание:
    • Сгорание плавкой вставки предохранителя происходит за максимально короткое время;
  • Перегрузки:
    • Сгорание плавкой вставки происходит за определенное время, которое зависит от величины тока в этом режиме. Чем больше ток перегрузки, тем быстрее сгорает предохранитель.
  • Нормальны режим. Нагревание устройства, является установившимся процессом, в котором:
    • Происходит полный нагрев до конкретной температуры и отдача количества выделенной теплоты;
    • Каждый предохранитель имеет обозначение с номинальным значением тока;
    • Необходим выбор плавящегося элемента с определенным током номинального режима.

При выборе необходимого предохранителя, нужно руководствоваться не только показанием величины тока, указанной на корпусе. Но также допустимое рабочее напряжение и времятоковую характеристику.

Времятоковая характеристика необходима для показания величины изменения времени полного разрыва цепи при подаче тока определенного значения.

Конструкция

Основным элементом, входящим в состав предохранителя является – плавкая вставка. Данные вставки имеют множество конфигураций, но тем не менее имеют два базовых элемента:

  • Плавкий элемент – выполнен из сплава различных металлов либо выполняется со специально подобранными сплавами металла.

Плавкие вставки выполняются из различных материалов:

  1. цинк;
  2. свинец;
  3. медь;
  4. олово;
  5. серебро.
  • Корпус – блок, содержащий комплекс крепежных элементов, позволяющих подключение коммутационного элемента к электрической цепи.

Корпуса выполняются из разновидностей прочной керамики такие как:

  1. фарфор;
  2. корундо-муллитовая керамика;
  3. стеатит.

При использовании электропредохранителей с малым током номинального режима корпус выполняется из специальных стекол.

К основным параметрам, характеризующие плавкие предохранители относятся:

  1. номинальное напряжение;
  2. номинальный ток;
  3. максимальная мощность;
  4. скорость срабатывания.

Все эти факторы необходимо учитывать при расчете плавкой вставки.

Расчет плавких значений номинального тока производится согласно формулы 1:

Из формулы, для расчета, необходимо знать U – напряжение, Pmax – максимальная нагрузочная мощность.

Виды предохранителей

Основным и наиболее важным этапом является выбор плавких вставок предохранителей. Это необходимо, учитывая различные условия в которых применяются следующие разновидности электропредохранителей:

  • Электропредохранители вилочные. Данный тип токопроводящих устройств зачастую работает в цепи постоянного тока. Конструкция выполнена в виде расположения электроконтактов с одной стороны, а плавкой части с обратной.

Вилочные предохранительные элементы подразделяются на:

  1. вилочные обычные;
  2. вилочные миниатюрных размеров.
  • Электропредохранители пробковые. Один из самых часто встречающихся видов. В основе конструкции лежит корпус, изготовленный из фарфора. Во внутренней части корпуса располагается тонкая проволока, которая сгорает в случае аварийного режима. В блок корпуса входит грузик, определяющий состояние предохранительного компонента. Каждый грузик имеет определённый цвет, соответствующий необходимой силе тока. В случае его свисания на участке проволоки, требуется его замена.

Разновидности конфигураций и назначение:

  1. DIAZED – применим в системе, элементы которой выполнены для самых различных требований методов установки.
  2. NEOZED – такой тип позволяет безопасно произвести замену плавких элементов при обесточенном состоянии.

Номинальный ток плавкой вставки выбирается исходя из максимальной мощности сети.

Величины токов согласно цвета чеки

  • Электропредохранители ножевые. Данная разновидность применяется на линиях электроустановок, с рабочей величиной тока порядка 1200 – 1300 А. В свою очередь являются очень опасными для здоровья человека. Использование таких разновидностей компонента токопроводящей системе ведет к очень жесткому выполнению всех требований техники безопасности. На таких объектах работают только персонал, имеющий соответствующую квалификацию.

Ножевой электрический предохранитель по значению тока делится:

  1. 000 (˂ 100 А);
  2. 00 (˂ 160 А);
  3. 0 (˂ 250 А);
  4. 1 (˂ 355 А);
  5. 2 (˂ 500 А);
  6. 3 (˂ 800 А);
  7. 4а (˂ 1250 А).
  • Вставки слаботочные. Основное их назначение это - защита маломощных электрических цепей. Конструкция имеет стеклянный корпус, выполненный в виде цилиндра с металлическими элементами, соединенными токопроводящей проволокой. При коротком замыкании происходит сгорание проволоки, которая в свою очередь размыкает цепь и сохраняет неповрежденными остальные элементы схемы.

Такие корпуса выполняются с различными габаритными размерами (в мм):

  1. 3 х 15;
  2. 5 х 20;
  3. 7 х 15;
  4. 10 х 38.

Подведя итог рассмотрения плавких предохранителей, стоит отметить что предохранители должны применяться во многих электрических устройствах во избежание повреждения их элементов. Кроме вышесказанного имеет смысл обратить внимание на их достоинства и недостатки.

Достоинства:

  1. невысокая стоимость;
  2. в случае высокого скачка тока, электропредохранитель полностью размыкает электрическую цепь.
  3. в случае выхода из строя предохранителя, имеется возможность простой замены токопроводящего элемента.

Недостатки:

  1. использование предохранителя лишь один раз, потом выполняется его замена;
  2. замена токопроводящего элемента на электропредохранитель большего номинала;
  3. при использовании трехфазных электродвигателей, рекомендуется использовать реле фаз, во избежание сгорания одного из предохранителей.

В последнее время многие производители применяют для разработки современные стандарты качества, для того чтобы блок каждого токопроводящего элемента мог достойно конкурировать с европейскими и мировыми аналогами.

Таким образом, защита электрических цепей с помощью различных предохранителей является одним из самых простых, надежных и дешевых способов.

Видео о плавких предохранителях

предназначены для защиты отдельных аппаратов и участков сети от токов короткого замыкания и токов перегрузки.

Обычно предохранители состоят из патрона и плавкой вставки и различаются по номинальному напряжению и току. При токе более номинального плавкая вставка перегорает и размыкает электрическую цепь.

Для защиты силовых трансформаторов на напряжение 3 — 10кВ применяют предохранители ПК, у которых фарфоровый или стеклянный патрон заполнен кварцевым песком (смотри рисунок ниже). Внутри патрона находится плавкая вставка, рассчитанная на прохождение номинального тока.

1 — фарфоровый патрон. 2 — контактные губки,

3 — ограничитель. 4 — опорный изолятор,

5 — основание, 6 — замок

Предохранители ПК имеют достаточную разрывную способность — при отключении тока короткого замыкания предохранитель не разрушается и перекрытий «на землю» и соседние элементы установки не происходит.

При п ерегорании плавкой вставки предохранителя ПК срабатывает указательное устройство, которое находится внутри патрона и удерживается плавкой вставкой и проволочкой с пружиной. При перегорании плавкой вставки и проволочки пружина освобождается и выталкивает указатель наружу. Патроны предохранителей ПК вставляют в губки держателей так» чтобы указательное устройство находилось в нижней части патрона. На верхней торцовой части патрона указывают номинальное напряжение и ток предохранителя, например: 10кВ, 50А.

Для мачтовых трансформаторных подстанций применяют кварцевые предохранители наружной установки ПК-6Н на напряжение 6кВ и ПК-10Н на напряжение 10кВ, имеющие герметизированные патроны и опорные изоляторы, предназначенные для работы на открытом воздухе.

Предохранители ПКТ-10 служат для защиты измерительных трансформаторов на напряжение 3 — 10кВ и в отличие от предохранителей ПК не имеют сигнального устройства.

Для защиты установок на напряжение до 1000В используют пробочные, трубчатые и открытые (пластинчатые) предохранители .

Пробочный предохранитель состоит из фарфорового корпуса и пробки с плавкой вставкой. Питающую линию присоединяют к контакту предохранителя, отходящую — к винтовой резьбе. При коротком замыкании или перегрузке плавкая вставка перегорает, и ток в цепи прекращается. Применяют следующие типы пробочных предохранителей: Ц-14 на ток до 10А и напряжение 250В с прямоугольным основанием; Ц-27 на ток до 20А и напряжением 500В с прямоугольным или квадратным основанием и Ц-33 на ток до 60А и напряжение 500В с прямоугольным или квадратным основанием.

Трубчатые предохранители выпускают следующих типов: ПР-2, НПН и ПН-2. Предохранители ПР-2 (предохранитель разборный) предназначены для установки в сетях напряжением 500В и на токи 15, 60, 100, 200, 400, 600 и 1000А.

1 — контактные ножи, 2 — латунные колпачки,

3 — втулка с резьбой, 4 — фибровая трубка,

5 — плавкая вставка, 6 — винты

В патроне предохранителя ПР-2 (смотри рисунок выше) плавкая вставка 5, прикрепляемая винтами 6 к контактным ножам 1, помещена в фибровую трубку 4, на которую насажены втулки 3 с резьбой. На них навинчены латунные колпачки 2, закрепляющие контактные ножи, которые входят в неподвижные пружинящие контакты, устанавливаемые на изоляционной плите.

Под действием электрической дуги, возникающей при перегорании предохранителя, внутренняя поверхность фибровой трубки разлагается и образуются газы, способствующие быстрому гашению дуги.

Предохранители НПН (насыпной предохранитель неразборный) изготовляют на напряжение до 500В и токи от 15 до 60А, предохранители ГШ-2 (предохранитель насыпной разборный) — на напряжение до 500В и токи от 10 до 600А. В насыпных предохранителях плавкие вставки, выполненные из нескольких параллельных медных или посеребренных проволок, помещены в закрытый фарфоровый патрон, заполненный кварцевым песком, способствующим быстрому гашению электрической дуги.

Пластинчатые открытые предохранители состоят из медных или латунных пластин — наконечников, в которые впаяны медные калиброванные проволоки. Наконечники с помощью болтов присоединяют к контактам на изоляторах. Пластинчатые предохранители с открытой плавкой вставкой применяют в ТП некоторых городских электросетей и заменяют на закрытые ПН-2 и др.

Предохранители используются везде и всюду - они есть в технике, в самых разных электрических устройствах, автомобилях, промышленном оборудовании. Существует множество видов этих элементов. Для чего они нужны и в чем их особенности? Рассмотрим основные виды предохранителей.

Характеристика

Предохранитель - это общий термин, который достаточно устойчиво используется в области электрики. Эта деталь предполагает защиту для проводов, оборудования и электрических сетей.

Предохранитель представляет собой коммутационное изделие. В чем его назначение? Предохранитель призван защитить электрическую сеть от высоких токов и коротких замыканий. Принцип действия детали очень простой - в случае образования сверхтоков разрушается специально предназначенный для этого элемент. Зачастую это плавкая вставка. Так устроены все виды стеклянных предохранителей.

Эти вставки - обязательный элемент, без которого невозможен ни один вид предохранительных элементов. Внутри нее также имеется и специальное дугогасительное устройство. Вставки в предохранителях изготавливаются из фарфоровых или фибровых корпусов и закрепляются в специальные части, что проводят электрический ток. Элементы, предназначенные под малые токи, могут и вовсе не иметь корпуса.

Плавкий

Это наиболее распространенные виды предохранителей для использования в быту. Наверное, это единственный элемент, который проще всего диагностировать на предмет исправности. Для этого нужно просто посмотреть деталь на просвет - будет видно, цела плавка вставки или нет.

Изготавливают данные детали в стеклянном корпусе.

Плавкий трубчатый керамический

Этот элемент практически ничем не отличается от стеклянного изделия. Единственное различие в материале, из которого изготовлен корпус. Но в эксплуатации эти детали не так комфортны - диагностировать «на свет» уже не выйдет. Для проверки необходимо использовать тестеры или мультиметры.

Плавкая вставка ПВД

Быстродействующие предохранители

Эти изделия ничем особенным от остальных не отличаются. Различие только в том, что при возникновении короткого замыкания плавкая часть сгорает очень быстро.

SMD

Данные изделия можно встретить в электронных устройствах. Они очень миниатюрны. Принцип действия и назначения предохранителей - защитить технику от высоких токов, с чем они отлично справляются.

Самовосстанавливающиеся

Это достаточно интересные решения. Самовосстанавливающийся предохранитель представляет собой деталь, внутри которой находится специальный пластик. Пока пластиковая вставка холодная, она может проводить электричество. Как только вставка разогреется до определенной температуры, ее токопроводящие свойства теряются за счет увеличения сопротивления.

После остывания ток снова сможет проходить через изделие. Плюс данных деталей в том, что после перегорания нет никакой нужды в замене элемента. Промышленность выпускает эти изделия в различных видах. Они подходят для пайки по технологии навесного или поверхностного монтажа. В основном эти виды предохранителей используют в маломощных схемах.

Взрывные

Если все вышеперечисленные изделия знает каждый, то взрывной предохранитель - это редкая группа. Процесс перегорания детали обеспечивается достаточно эффектным звуком. Специальное которое закрепляется на токопроводящей детали, взрывается. За это отвечают специальные датчики. Последние следят за током в электрической цепи. Это очень точные предохранители, так как они практически не зависят от характеристик металла на токопроводящей детали. Данный элемент зависит от точности датчика тока.

Другие типы предохранителей

Для работы в цепях используют специальные автогазовые, газовые изделия, а также элементы жидкостного типа. Существуют даже стреляющие предохранители. В обыденной жизни их увидеть нельзя - это профессиональное мощное оборудование.

Маркировка и обозначения

Каждый производитель изготавливает предохранители под определенным кодом или артикулом. Номер предохранителя позволяет в каталогах найти и уточнить технические характеристики. Зачастую эти коды можно найти на корпусах изделий. Также код может наноситься на металлическую часть. Кроме кодов, на корпусе также могут указываться основные данные - это номинальный ток в А, номинальные напряжения в В, отключающие характеристики либо особенности конструкции. По этим данным можно определить назначение предохранителей.

Итак, величина номинального тока - это максимально допустимое значение, при котором деталь может нормально функционировать в течение длительного срока.

Номинальные напряжения - это максимально допустимое напряжение, при котором деталь безопасно разрывает цепь в случае короткого замыкания или при перегрузке в сети.

Отключающей способностью называют максимальные токи. При них предохранитель сработает, но корпус его не будет разрушен.

Характеристиками называют зависимость времени, при котором рушится плавкий элемент от тока, что протекает через деталь. Разные виды предохранителей по характеристикам объединены в группы по особенностям применения и скорости срабатывания.

Обычно эти характеристики указывают на силовых деталях. Для обозначения используются буквы латинского алфавита. Первой обозначается отключающая способность. Так, G - это полный диапазон, деталь способна защитить цепь и от перегрузки, и от короткого замыкания. А - диапазон частичный, а такие виды предохранителей защищают только от коротких замыканий.

Второй буквой обозначаются типы цепи:

  • G - цепь общего назначения.
  • L - защита кабелей, а также распределительных систем.
  • M - защита цепей в электродвигателях.
  • Tr - предохранитель, способный защитить трансформаторную сеть.

Элементы с буквой R используются вместе с силовым полупроводниковым оборудованием. А PV сможет обеспечивать защиту солнечных батарей.

Итак, мы рассмотрели, какие бывают виды предохранителей и какую они имеют маркировку.

а) Назначение предохранителя. Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили их очень широкое применение. Предохранители НН изготовляются на токи от мА до тысяч А и на напряжение до 660 В, а предохранители ВН - до 35 кВ и выше.

Предохранители - это ЭА, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ.

Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную или автоматически. В последнем случае заменяется весь предохранитель.

Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

б) Принцип работы предохранителя, физические явления в электрическом аппарате. Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определённое значение.

В большей части конструкций отключение цепи осуществляется путём расплавления плавкой вставки, которая нагревается непосредственно током


защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную либо автоматически. В последнем случае заменяется весь предохранитель.

При токах > I плавления предохранитель должен срабатывать в соответствии с времятоковой характеристикой. Сростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока. Для получения такой характеристики придают вставке определенную форму или используют металлургический эффект.

Вставку выполняют в виде пластинки с вырезами (рис. 6.1,а ), уменьшающими ее сечение на отдельных участках. На этих суженых участках

Рис.6.1 – Распределение температур (а ) и места перегорания фигурных плавких вставок при перегрузках (б ) и при КЗ (в )

выделяется больше теплоты, чем на широких. При I ном избыточная теплота вследствие теплопроводности материала вставки успевает распределятся к более широким частям и вся вставка имеет практически одну температуру. При перегрузках (I ) нагрев суженных участков идет быстрее, т.к. только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис 6.1,б ). При КЗ (I » ) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или нескольких суженых местах (рис 6.1,в ).

Во многих конструкциях вставке 1 придается такая форма (рис 6.2,а) , при которой электродинамические силы F, возникающие при токах КЗ, разрывают вставку еще до того, как она успевает расплавиться. На рис. 6.2,а место разрыва обозначено кружком. Этот участок выполняется меньшего сечения.

Рис. 6.2. Примеры форм плавких вставок с ускоренным их разрывом


При токах перегрузки электродинамические силы малы и плавкая вставка плавится.в суженом месте. В конструкции на рис. 6.2,б ускорение отключения цепи при перегрузках и КЗ достигается за счет пружины 2, разрывающей вставку 1 при размягчении металла на суженных участках, до того, как происходит плавление этих участков.

Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять другие тугоплавкие металлы (медь, серебро и др.). Это явление используется в предохранителях с вставками из ряда параллельных проволок.

Для ускорения плавления вставок при перегрузках на проволоки напаиваются оловянные шарики. При токах перегрузки шарик расплавляется и растворяет часть металла, на котором он напаян. Вставка перегорает в месте напайки шарика.

Параметры предохранителя

Предохранитель работает в двух резко различных режимах: в нормальных условиях и условиях перегрузок и КЗ. В первом случае перегрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом кроме вставки нагреваются до установившейся температуры все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки Iном. Он может быть отличен от номинального тока самого предохранителя.

Обычно в один и тот же предохранитель можно вставлять плавкие вставки на разные номинальные токи. Номинальный ток предохранителя , указанный на нем, равен наибольшему из токов плавких вставок, предназначенных для данной конструкции предохранителя.

Защитные свойства предохранителя при перегрузках нормируются. Для предохранителей обычного быстродействия задаются условный ток не плавления - ток, при протекании которого в течении определенного времени плавкая вставка не должна перегореть, условный ток плавления - ток, при протекании которого в течении определенного времени плавкая вставка должна перегореть. Например, для предохранителя с плавкими вставками на номинальные токи 63 -100 А плавкие вставки не должны перегореть при протекании тока 1,3 I ном в течении одного часа, а при токе 1,6 I ном должны перегореть за время до одного часа.

Рассмотрим нагрев вставки при длительной нагрузке.

Основной характеристикой предохранителя является времятоковая характеристика , представляющая собой зависимость времени плавления вставки от протекающего тока t =f(i ). Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 6.3) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рис. 6.3) . Однако реальная характеристика предохранителя (кривая


3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске

Рис. 6.3. Согласование характеристик предохранителя и защищаемого объекта

двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается больше номинального тока нагрузки. При этом кривые 2 и 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает. При небольших перегрузках (1,5 – 2)I ном нагрев предохранителя протекает.медленно. Большая часть тепла отдается окружающей среде,

Ток, при котором плавкая вставка сгорает при достижении ею установившейся температуры, называется пограничным током I noгp. Для того, чтобы предохранитель не срабатывал при номинальном токе I ном, необходимо I noгp > I ном. С другой стороны, для лучшей защиты значение I noгp должно быть возможно ближе к номинальному.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы (медь, серебро, цинк, свинец, алюминий).

Рассмотрим нагрев вставки при КЗ.

Если ток, проходящий через вставку, в 3 - 4 раза больше I ном, то практически процесс нагрева идет адиабатически, т.е. все тепло, выделяемое вставкой, идет на ее нагрев.

Время нагрева вставки до температуры плавления

,

где А"- постоянная, определяемая свойствами материала; q - поперечное сечение вставки; j к -плотность тока вставки.

По мере того как часть плавкой вставки из твердого состояния перейдет в жидкое, ее удельное сопротивление резко увеличится (в десятки раз). Время перехода из твердого состояния в жидкое

,

где - удельное сопротивление материала вставки при температуре плавления; - удельное сопротивление материала вставки в жидком состоянии; у - плотность материала вставки; L - скрытая теплота плавления материала


Основным параметром предохранителя при КЗ является предельный ток отключения - ток, который он может отключить при возвращающемся напряжении, равном наибольшем рабочему напряжению.

Время существования дуги зависит от конструкции предохранителя. Полное время отключения цепи предохранителем

t пр= t пл + t перех + t дуги

Для предохранителя со вставкой, находящейся в воздухе

,

где коэффициент n =3 учитывает преждевременное разрушение вставки, a k 0 = 1.2 -1.3 учитывает длительности горения дуги.

В предохранителях с наполнителем (закрытого типа) разрушение вставки до полного ее плавления менее вероятно. Время отключения цепи предохранителем

,

Коэффициент к д = 1,7 -2 учитывает длительность горения дуги.

Плавление вставки переменного сечения происходит в перешейках с наименьшим сечением. Процесс нагрева протекает так быстро, что тепло почти не успевает отводится на участки повышенного сечения. Наличие перешейков уменьшенного сечения позволяет резко снизить время с момента начала КЗ до появления дуги. Процесс гашения дуги начинается до момента достижения током КЗ установившегося или даже амплитудного значения. Дуга образуется через время t 1 после начала КЗ, когда ток в цепи значительно меньше установившегося значения I k уст.

Средства дугогашения позволяют погасить дугу за миллисекунды. При этом проявляется эффект токоограничения, показанный на рис. При отключении поврежденной цепи с токоограничением облегчается гашение дуги, т. К. Отклю­чается не установившийся ток КЗ, а ток, определяемый временем плавления вставки.

Рис. 6.4. Отключение постоянного и переменного тока предохранителем с токоограничением

Конструкция предохранителей

в) Устройство предохранителя. Широкое применение предохранителей в


самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

Аппараты защиты предназначены для обеспечения безопасности работы электрических сетей, машин, электроустановок при возникновении них аварийных режимов (коротких замыканий, перегрузок). Однако, при неправильном монтаже и эксплуатации они сами могут быть причиной аварии, пожара и взрыва, т.к. во время их работы возникают электрические искры, дуги.

Наиболее распространенными аппаратами защиты являются:

    плавкие предохранители;

    воздушные автоматические выключатели;

    тепловые реле;

    устройства защитного отключения.

Плавким предохранителем называется устройство в котором при токе, превышающем допустимое значение, происходит расплавление плавкой вставки и размыкается электрическая цепь. Плавкие предохранители – это аппараты защиты одноразового действия.

Состав:

а) плавкая вставка;

б) контактное устройство;

в) корпус (патрон);

г) а иногда наполнитель (тальк, кварцевый песок и т.п.) для улучшения гашения дуги и визуальный показатель срабатывания.

Принцип действия плавких предохранителей основан на том, что проходящий через плавкую вставку ток выделяет тепло в соответствии с равенством гдеI- ток, проходящий через плавкую вставку, R- сопротивление плавкой вставки, t- время прохождения тока: при определенном значении тока I и времени t тепла выделяется достаточно для расплавления плавкой вставки и размыкания электрической цепи. Так осуществляется защита от тока перегрузки и КЗ.

Параметры плавких предохранителей

а) номинальный ток плавкой вставки I н.вст . – ток, на который она рассчитана при длительной работе и указывается на ней.

б) номинальный ток предохранителя I н.пр . – ток, равный наибольшему из Iн.вст и который указывается на предохранителе. На этот ток рассчитаны все токоведущие контактные части предохранителя;

в) номинальное напряжение U н.пр . – напряжение, соответствующее наибольшему напряжению, при котором его разрешается применять и указывается на предохранителе.

г) предельный ток отключения при данном напряжении I пр.пр . – наибольшее значение тока КЗ, при котором гарантируется надежность срабатывания (без разрушения корпуса).

(3 мин) Полное время отключения электрической цепи плавким предохранителем определяется временем нагревания вставки до температуры плавления, временем расплавления её и горения появляющийся при расплавлении дуги.

Зависимость полного времени отключения предохранителем цепи откл. от относительного тока перегрузки или КЗI/Iн.вст. называется защитной характеристикой, т.е. откл. = f (I / I н.вст.).

Зависимость промежутка времени, в течение которого температура элемента электрической установки достигнет предельно допустимой, от отношения фактического тока в нем I к номинальному току Iн называется тепловой характеристикой этого элемента, т.е. нагр.= f (I / I н).

Сопоставление защитных характеристик плавких предохранителей с тепловыми характеристиками защищаемых элементов позволяет оценить

возможность надежной защиты. (рис.1)

I/I Н.ВСТ и I/I h


(5 мин) Видно, что вставка с защитной характеристикой А защищает элемент э/установки с тепловой характеристикой В при любой кратности тока, а вставка с защитной характеристикой С – только при кратностях более 4-х.

Нам надо стремится чтобы время отключения было как можно меньше при действии токов к.з. и иметь задержку при токах перегрузки. Это можно сделать:

    правильно выбрать материал плавкой вставки;

    использовать металлургический эффект;

    выбрать рациональную конструкцию.

Вставки из легкоплавких металлов (олова, свинца, цинка, алюминия) имеют малую теплопроводность, поэтому нагреваются медленно, они удобны для защиты элементов от токов перегрузки.

Вставки из тугоплавких металлов (медь, серебро ) имеют малую теплоемкость и высокую теплопроводность, поэтому нагреваются быстро, дают меньшую выдержку времени при перегрузках, что ухудшает их защитные характеристики. Но они имеют большой предельный ток отключения, поэтому удобны для защиты элементов от токов К.З.

Для снижения температуры плавления (чтоб они нагревались медленнее) применяют вставки с металлургическим эффектом , для чего в середине вставки из тугоплавкого металла напаивают шарик из легкоплавкого (олово, сплав олова с кадмием и др.).

В месте напаивания шарика происходит растворение более тугоплавкого металла в легкоплавком. Такая вставка имеет лучшую защитную характеристику при токах перегрузки и меньшую температуру плавления (в 2-3 раза меньше температуры плавления основного металла).

С точки зрения конструктивного исполнения на защитную характеристику влияет длина (для предохранителей с U = 120 – 500В оптимальная длина вставки составляет 70мм) и форма вставки (вставки делают с несколькими параллельными ветвями, используют вставки с 2 – 4 короткими перешейками).



Статьи по теме