Принцип работы крыла самолета. "Командир, мы падаем!" Почему в последние секунды экипаж говорил о закрылках? корневой трехщелевой закрылок

Те люди, которые летали на самолетах и обращали внимание на крыло железной птицы, в то время как она садится или взлетает, наверняка замечали, что эта часть начинает меняться, появляются новые элементы, а само крыло становится шире. Этот процесс и называют механизацией крыла.

Общая информация

Люди всегда хотели быстрее ездить, быстрее летать и т. д. И, в общем-то, с самолетом это вполне получилось. В воздухе, когда аппарат уже летит, он развивает огромную скорость. Однако тут следует уточнить, что высокий показатель скорости приемлем лишь во время непосредственного полета. Во время взлета или посадки все совсем наоборот. Для того чтобы успешно поднять конструкцию в небо или же, наоборот, посадить ее, большая скорость не нужна. Причин этому несколько, но основная кроется в том, что для разгона понадобится огромная взлетная полоса.

Вторая основная причина - это предел прочности шасси самолета, который будет пройден, если взлетать таким образом. То есть в итоге получается так, что для скоростных полетов нужен один тип крыла, а для посадки и взлета - совсем другой. Что же делать в такой ситуации? Как создать у одного и того же самолета две принципиально разных по своей конструкции пары крыльев? Ответ - никак. Именно такое противоречие и подтолкнуло людей к новому изобретению, которое назвали механизацией крыла.

Угол атаки

Чтобы доступно объяснить, что такое механизация, необходимо изучить еще один небольшой аспект, который называется углом атаки. Эта характеристика имеет самую непосредственную связь со скоростью, которую самолет способен развить. Здесь важно понимать, что в полете практически любое крыло находится под углом по отношению к набегающему на него потоку. Вот этот показатель и зовется углом атаки.

Допустим, чтобы лететь с малой скоростью и при этом сохранить подъемную силу, чтобы не упасть, придется увеличить этот угол, то есть самолета вверх, как это делается на взлете. Однако тут важно уточнить, что есть критическая отметка, после пересечения которой поток не сможет удерживаться на поверхности конструкции и сорвется с нее. Такое в пилотировании называют отрывом пограничного слоя.

Этим слоем называют поток воздуха, который непосредственно соприкасается с крылом самолета и создает при этом аэродинамические силы. С учетом всего этого формируется требование - наличие большой подъемной мощности на малой скорости и поддержание требуемого угла атаки, чтобы лететь на высокой скорости. Именно эти два качества и совмещает в себе механизация крыла самолета.

Улучшение характеристик

Для того чтобы улучшить взлетно-посадочные характеристики, а также обеспечить безопасность экипажа и пассажиров, необходимо по максимуму уменьшить скорость взлета и посадки. Именно наличие этих двух факторов привело к тому, что проектировщики профиля крыла стали прибегать к созданию большого числа различных устройств, которые располагаются непосредственно на крыле самолета. Набор этих специальных управляемых устройств и стали называть механизацией крыла в авиастроении.

Предназначение механизации

Применяя такие крылья, удалось достичь сильного увеличения значения подъемной силы аппарата. Значительное увеличение этого показателя привело к тому, что сильно уменьшился пробег самолета при посадке по полосе, а также уменьшилась скорость, с которой он приземляется или взлетает. Назначение механизации крыла также в том, что она улучшила устойчивость и повысила управляемость такой большой авиамашины, как самолет. Это особенно стало заметно, когда летательный аппарат набирает высокий угол атаки. К тому же стоит сказать, что существенное снижение скорости посадки и взлета не только увеличило безопасность выполнения этих операций, но и позволило сократить затраты на строительство взлетных полос, так как появилась возможность их сокращения по длине.

Суть механизации

Итак, если говорить в общем, то механизация крыла привела к тому, что были значительно улучшены взлетно-посадочные параметры самолета. Такой результат был достигнут за счет сильного увеличения максимального коэффициента подъемной силы.

Суть этого процесса заключена в том, что добавляются специальные устройства, которые усиливают кривизну профиля крыла аппарата. В некоторых случаях получается и так, что увеличивается не только кривизна, но и непосредственная площадь этого элемента самолета. Из-за изменения этих показателей полностью меняется и картина обтекаемости. Эти факторы и являются определяющими в увеличении коэффициента подъемной силы.

Важно отметить, что конструкция механизации крыла выполняется таким образом, чтобы в полете все эти детали были управляемыми. Нюанс кроется в том, что на малом углу атаки, то есть при полете уже в воздухе на большой скорости, они фактически не используются. Весь их потенциал раскрывается именно при посадке или взлете. В настоящее время различают несколько видов механизации.

Щиток

Щиток - это одна из самых распространенных и самых простых деталей механизированного крыла, которая довольно эффективно справляется с задачей повышения коэффициента подъемной силы. В схеме механизации крыла этот элемент представляет собой отклоняющуюся поверхность. При убранном положении этот элемент почти вплотную примыкает к нижней и задней части крыла самолета. При отклонении этой детали максимальная подъемная сила аппарата увеличивается, потому что меняется эффективный угол атаки, а также вогнутость или кривизна профиля.

Для того чтобы увеличить эффективность этого элемента, его конструктивно исполняют так, чтобы он при своем отклонении смещался назад и одновременно с этим к задней кромке. Именно такой способ даст наибольшую эффективность отсоса пограничного слоя с верхней поверхности крыла. Кроме этого, увеличивается эффективная протяженность зоны повышенного давления под крылом самолета.

Конструкция и назначение механизации крыла самолета с предкрылками

Здесь важно отметить сразу, что фиксированный предкрылок монтируется только на те модели самолета, которые не являются скоростными. Это объясняется тем, что такой тип конструкции значительно увеличивает лобовое сопротивление, а это резко снижает возможность летательного аппарата развить высокую скорость.

Закрылки

Схема механизации крыла с закрылками - одна из самых старых, так как эти элементы были одними из первых, которые стали использоваться. Расположение этого элемента всегда одно и то же, находятся они на задней части крыла. Движение, которое они выполняют, также всегда одинаковое, они всегда опускаются строго вниз. Также они могут немного выдвигаться назад. Наличие этого простого элемента на практике оказалось очень эффективным. Он помогает самолету не только при взлете или посадке, но и при выполнении любых других маневров при пилотировании.

Тип этого элемента может несколько изменяться в зависимости от на котором он используется. Механизация крыла ТУ-154, который считается одним из самых распространенных типов самолета, также имеет это простое устройство. Некоторые самолеты характеризуются тем, что их закрылки поделены на несколько самостоятельных частей, а у некоторых это один сплошной закрылок.

Элероны и интерцепторы

Кроме тех элементов, что уже были описаны, есть еще те, которые можно отнести к второстепенным. Система механизации крыла включает в себя такие второстепенные детали, как элероны. Работа этих деталей осуществляется дифференциально. Чаще всего используется конструкция такая, что на одном крыле элероны направлены вверх, а на втором они направлены вниз. Кроме них есть еще и такие элементы, как флапероны. По своим характеристикам они схожи с закрылками, отклоняться эти детали могут не только в разные стороны, но и в одну и ту же.

Дополнительными элементами являются также интерцепторы. Эта деталь является плоской и располагается на поверхности крыла. Отклонение, или скорее подъем, интерцептора осуществляется прямо в поток. Из-за этого происходит увеличение торможения потока, в силу этого увеличивается давление на верхней поверхности. Это приводит к тому, что уменьшается подъемная сила именно данного крыла. Эти элементы крыла иногда еще называют органами для управления подъемной силой самолета.

Стоит сказать о том, что это довольно краткая характеристика всех элементов конструкции механизации крыла самолета. В действительности там используется намного больше разнообразных мелких деталей, элементов, которые позволяют пилотам полностью контролировать процесс посадки, взлета, самого полета и т. д.

Когда летишь в самолете пассажиром и сидишь у иллюминатора напротив крыла, это кажется магией. Все эти штучки, которые выдвигаются, поднимаются, опускаются, убираются, а самолет в итоге летит. Но когда начинаешь обучение пилотированию и управляешь самолетом самостоятельно, становится ясно: никакой магии, а чистая физика, логика и здравый смысл.

Все вместе эти штуковины называются «механизация крыла». В буквальном переводе на английский high lift devices. Дословно – приспособления для увеличения подъемной силы. Более точно – для изменения характеристик крыла на разных стадиях полета.

По мере развития авиатехники количество этих устройств становилось все больше – закрылки, предкрылки, щитки, флапероны, элероны, элевоны, интерцепторы и другие средства механизации. Но самыми первыми изобрели закрылки. Они же являются самыми эффективными, а на некоторых самолетах – и единственными. И если маленький легкомоторный самолет вроде Цессна 172S теоретически на взлете можно обойтись и без них, то большой пассажирский авиалайнер без использования закрылков в прямом смысле слова не сможет оторваться от земли.

Не вся скорость одинаково полезна
Современное авиастроение – это вечные поиски баланса между прибылью и безопасностью. Прибыль – это возможность преодолевать как можно большие расстояния, то есть высокая скорость в полете. Безопасность – это, напротив, относительно невысокая скорость на взлете и особенно посадке. Как это совместить?

Чтобы быстро лететь, нужно крыло с узким профилем. Характерный пример – сверхзвуковые истребители. Вот только для взлета ему нужна огромная полоса для разбега, а для посадки и вовсе специальный тормозной парашют. Если сделать крыло широким и толстым, как у винтовых транспортников, садиться будет намного проще, но и скорость в полете намного ниже. Как быть?

Вариантов два – оборудовать все аэродромы длинными-длинными полосами, чтобы их хватало для длинных разбегов и пробегов, либо сделать так, чтобы профиль крыла мог меняться на разных стадиях полета. Как ни странно звучит, второй вариант намного проще.

Как взлетает самолет
Чтобы самолет взлетел, нужно, чтобы подъемная сила крыла превысила силу притяжения. Это азы, с которых начинается теоретическое обучение на пилота . Когда самолет стоит на земле, подъемная сила равна нулю. Увеличить ее можно двумя способами.

Первый – включить двигатели и начать разбег, потому что подъемная сила зависит от скорости. В принципе, для легкого самолета как Цессна-172 на длинной полосе этого вполне может хватить. Но когда самолет тяжелый, а полоса короткая, простого набора скорости не хватит.

Тут мог бы помочь второй вариант – увеличить угол атаки (задрать нос самолета вверх). Но и здесь не все так просто, потому что увеличивать угол атаки бесконечно нельзя. В какой-то момент он превысит так называемое критическое значение, после которого самолет рискует попасть в сваливание. Меняя форму крыла с помощью закрылков, пилот самолета может регулировать скорость (не самолета, а всего лишь обтекания крыла воздушным потоком) и угол атаки.

Обучение пилотированию: от теории к практике
Выпущенные закрылки меняют профиль крыла, а именно - увеличивают его кривизну. Очевидно, что вместе с этим увеличивается сопротивление. Зато уменьшается скорость сваливания. На практике это означает, что угол атаки не изменился, а подъемная сила выросла.

Почему это важно
Чем меньше угол атаки – тем ниже скорость сваливания. То есть теперь пилот самолета может увеличить угол атаки и взлететь, даже если не хватает скорости (мощности двигателя) и длины полосы для разбега.

Но у любой медали есть обратная сторона. Увеличение подъемной силы неизбежно ведет к увеличению сопротивления. То есть придется увеличить тягу, а значит вырастет расход топлива. Зато на посадке избыточное сопротивление напротив даже полезно, поскольку помогает быстрее затормозить самолет.

Все дело в градусах
Конкретные значения сильно зависят от модели, веса, загрузки самолета, длины ВПП, требований производителя и много-много чего еще, чуть ли не температуры за бортом. Но как правило для взлета закрылки выпускают на 5-15 градусов, для посадки – на 25-40 градусов.

Почему так – уже было сказано выше. Чем круче угол – тем больше сопротивление, тем эффективнее торможение. Отличный способ увидеть все это на практике – отправиться в пробный полет, в котором пилот самолета все покажет, расскажет и даже даст попробовать управлять самолетом самому.

Понимая это, легко понять и то, почему после перехода в горизонтальный полет закрылки, напротив, жизненно важно убрать. Дело в том, что изменившаяся форма крыла вызывает не просто сопротивление, но и меняет само качество набегающего потока. Конкретно речь идет о так называемом приграничном слое – том, который непосредственно соприкасается с крылом. Из плавного (ламинарного) он превращается в турбулентый.

И чем сильнее кривизна крыла – тем сильнее турбулентность, а там уже и до срыва потока недалеко. Более того, на высокой скорости «забытые» закрылки могут элементарно оторваться, а это уже критично, поскольку любая ассиметрия (вряд ли их оба оторвет одновременно) грозит потерей управления, вплоть до штопора.

Что еще бывает
Предкрылки. Как видно из названия, расположена в передней части крыла. По своему предназначению закрылками – позволяют регулировать несущие свойства крыла. в частности, летать на больших углах атаки, а значит на меньших скоростях.

Элероны. Расположены ближе к концовкам крыльев и позволяют регулировать крен. В отличие от закрылков, работающих строго синхронно, элероны двигаются дифференциально – если один вверх, то второй вниз.

Особой разновидностью элеронов являются флапероны – гибрид закрылков (англ. flap) и элеронов (aileron). Чаще всего ими оборудуют легкие самолеты.

Интерцепторы. Своего рода «аэродинамический тормоз» - расположенные на верхней плоскости крыла поверхности, которые при посадке (или прерванном взлете) поднимаются, увеличивая аэродинамическое сопротивление.

А еще бывают элерон-интерцепторы, многофункциональные интерцепторы (они же спойлеры), плюс каждая из перечисленных выше категорий имеет свои разновидности, так что перечислить все в рамках статьи невозможно физически. Как раз для этого и существует летная школа и курсы обучения на пилота .

Предварительные данные расшифровки речевого самописца лайнера Минобороны говорят о том, что самолёт потерял управление из-за проблем с закрылками и перешёл в критический угол атаки.

После того как спасателям удалось поднять со дна Чёрного моря речевой бортовой самописец с разбившегося Ту-154 Минобороны, эксперты смогли расшифровать запись, хранящуюся на нём. Плёнка, фиксировавшая переговоры экипажа и разговоры внутри кабины, оказалась не повреждена.

Разговор прерывается на том, что один из пилотов восклицает: "Закрылки, с*ка!" А затем звучит крик: "Командир, падаем!", - рассказал источник.

При расшифровке чёрных ящиков специалисты услышали характерный сигнал системы, который сопутствует превышению угла атаки. Эта система автоматически реагирует на критический угол атаки, - пояснил источник Лайфа.

Эксперт пояснил Лайфу, что только по обрывкам фраз членов экипажа делать окончательные выводы о причинах катастрофы пока преждевременно.

Это может быть субъективный взгляд со стороны экипажа, который, правда, подтверждает записанный звук автоматической речевой сигнализации, оповещающий экипаж о превышении угла атаки, - рассказывает эксперт.

По его мнению, у экипажа во время набора высоты возникли какие-то проблемы со взлётно-посадочной механизацией. Закрылки управляют движением самолёта по вертикали на малых скоростях. В выпущенном состоянии они увеличивают подъёмную силу крыла. Положение закрылков важно как при взлёте, так и при посадке. В чём именно выражались проблемы у Ту-154, пока сказать нельзя. Возможно, это была ошибка пилотов при управлении механизацией, а может быть, и несинхронная уборка механизации.

Теперь в этом нужно разбираться, - утверждает источник Лайфа в комиссии по расследованию катастрофы лайнера Минобороны. - Второй самописец, параметрический, пока не доставлен в Центральный научно-исследовательский институт Минобороны, и пока не известно, когда начнётся его расшифровка.

Как пояснил Лайфу вице-президент Федерации любителей авиации заслуженный лётчик-испытатель СССР Виктор Заболотский, в случае если у самолёта возникают проблемы с закрылками, он может стать неуправляемым.

Получается, у одного крыла подъёмная сила большая, а у второго маленькая, естественно, самолёт будет переворачивать, - отметил он. - Если закрылки не убираются или убираются неравномерно, тогда возникают очень мощные кренящие моменты и управлять самолётом очень тяжело.

Летчик-испытатель Герой России Магомед Толбоев также считает, что неполадки с закрылками не могут произойти просто так.

Это отказ авиационной техники. Неуборка закрылка или уборка только с одной стороны приводит к разрушению полукрыла самолета. С той стороны, откуда они были выпущены, происходит сваливание самолёта и потеря скорости, - пояснил Толбоев. - Всё это происходит очень быстро, и многие лётчики просто не знают, что делать в такой ситуации. Это касается не только военных летчиков, но и гражданских.

По словам Толбоева, при расшифровке чёрных ящиков специалисты услышали характерный сигнал системы, который сопутствует превышению угла атаки. Эта система реагирует автоматически. Толбоев говорит, что срабатывание этого датчика - серьёзный сигнал для командира экипажа.

Он срабатывает при потере скорости или когда крыло находится на полном нагружении и больше самолёт поднять не может, - пояснил эксперт.

Источник Лайфа в Минобороны рассказывает, что расшифровка речевого самописца подтверждает предварительные выводы инженеров Научно-исследовательского центра эксплуатации и ремонта авиатехники (НИЦ ЭРАТ) Минобороны о причинах катастрофы.

Катастрофа произошла, когда пилоты убирали механизацию, а самолёт шёл с большим углом тангажа. В итоге произошло его сваливание с эшелона во время манёвра вправо, - говорит собеседник Лайфа.

Один из пилотов Росавиации подтверждает версию военных авиационных инженеров.

Причиной падения Ту-154 на этой временной отметке полёта может служить только рассинхронизация уборки закрылков, - рассказал Лайфу авиатор.

По его словам, на второй минуте полёта убираются закрылки - части крыла, управляющие поворотами. На этом этапе может подвести автоматика, тогда один из закрылков останется поднятым.

Это нарушает аэродинамику так, что самолёт начинает закручивать в сторону крыла с неубранным закрылком. Остановить эту ситуацию можно было при наличии запаса высоты, но на момент трагедии у пилотов Ту-154 его ещё не было, - рассказал Лайфу пилот.

Авиационный эксперт Сергей Крутоусов, считает, что необходимо дождаться полной расшифровки как речевого, так и параметрического самописца Ту-154, фиксирующего работу узлов и агрегатов самолёта.

Сергей Крутоусов не исключил и пресловутый человеческий фактор: при наборе высоты пилоты не смогли рассчитать правильный угол тангажа.

При пилотировании при наборе высоты в штурвальном режиме основная трудность состоит именно в выдерживании скорости, что является стабильностью при пилотировании и удерживании лайнера по тангажу при скорости набора высоты 500–550 км в час, - говорит эксперт Сергей Крутоусов.

По его словам, при большом положительном угле тангажа, когда у лайнера задран нос, он мог выйти на критические показатели, потерять подъёмную силу и свалиться с эшелона.

Эксперт из Росавиации говорит, что предварительное исследование записи речевого самописца выводит в приоритет версии о технической неисправности лайнера и ошибке пилотов. Впрочем, отрабатываются и другие версии. Например, попадание в двигатель посторонних предметов (к примеру, птицы), некачественное топливо, повлёкшее потерю мощности и отказ работы двигателей.

Следователи ГВСУ, которые ведут расследование катастрофы, также склоняются к техническому фактору.

Вероятно, причиной катастрофы Ту-154 при наборе высоты мог стать отказ гидросистемы самолёта, что привело к полной утрате способности экипажа управлять машиной. Причиной отказа гидросистемы самолёта могло стать короткое замыкание в одном из двигателей лайнера, - рассказал Лайфу источник в ГВСУ.

Подтвердить или опровергнуть эту версию в ближайшее время смогут специалисты.

Катастрофа с Ту-154 произошла 25 декабря 2016 года в 5:40 утра по московскому времени в 1,7 километра от побережья Сочи. Борт российского Минобороны летел в сирийский Хмеймим с аэродрома Чкаловский, в аэропорту Сочи же он дозаправлялся. На борту лайнера находилось 92 человека. Через две минуты после отрыва от полосы, не успев набрать высоту, самолёт пропал с экранов радаров. Никаких сигналов тревоги экипаж не подавал.

Спасатели уже обнаружили хвостовую часть Ту-154 с двигателями, а также бортовые самописцы и 14 тел погибших.

Из многочисленных средств передвижения именно самолет является самым быстрым, удобным и безопасным. Каждый современный человек видел авиалайнер, но не все понимают, как именно работает механизм. В этой статье мы подробно рассмотрим строение крыла самолета.

Конструкция авиалайнера состоит из следующих основных элементов:

  • крыла;
  • оперения хвостовой части;
  • устройства для взлета и посадки;
  • фюзеляжа;
  • двигателей.

Поскольку в рамках одной статьи невозможно детально рассмотреть каждый элемент конструкции, далее мы сфокусируем внимание исключительно на крыльях.

Одним из основных «органов» воздушного транспорта являются крылья, без которых самолет даже не сможет оторваться от земли. Конструкция крыла самолета состоит из правой и левой консоли, основное предназначение данного узла – создать необходимую подъемную силу для авиалайнера .

Здесь расположена механизация для взлета и посадки, которая в несколько раз улучшает следующие характеристики:

  • разгон авиалайнера;
  • скорость разбега;
  • скорость взлета и посадки.

Также тут располагаются топливные баки, а на военных машинах предусмотрены место для перевозки военного снаряжения.

От чего зависят летные качества авиатранспорта?

Размах и форма крыла самолета влияют на летные качества. Размах крыла самолета определяется длиной между прямым крылом и концевой точкой данного элемента.

Профиль крыла самолета – это сечение по плоскости, которое замеряется перпендикулярно размаху. В зависимости от предназначения авиалайнера его профиль крыла может меняться, и именно этот момент является основным, ведь с его помощью формируется сам летательный аппарат. То есть профиль крыла самолета влияет на назначение авиатранспорта и скорость его передвижения. Например:

  • профиль с острой передней кромкой предназначается для скоростных авиалайнеров МИГ-25;
  • высотный самолет МИГ-31 обладает аналогичным профилем;
  • более толстый профиль с передней закругленной кромкой предназначается для авиатранспорта, предназначенного для транспортировки пассажиров.

Существует несколько вариантов профилей, однако их форма исполнения всегда одинаковая. Данный элемент представляется в виде капли различной толщины.

Создавая профиль для любого летательного аппарата, производители сперва проводят точные расчеты, основанные на аэродинамике. Подготовленный образец проверяется в специальной аэродинамической трубе, и если технические характеристики подойдут для полетных условий, профиль устанавливается на летательный аппарат. Разработкой аэродинамических профилей занимались ученые с начала развития авиации, процесс разработки не прекращается и в настоящее время.

Крыло самолета «Москито»

Принцип работы

При помощи крыла летательный аппарат удерживается в небе. Многие ошибочно считают, что авиатранспорт обладает двумя крыльями , на самом деле у него имеется всего один элемент , и две плоскости, которые расположены на правой и левой сторонах.

То, как работает крыло самолета, доступно объяснили журналисты телеканала «Россия 2». Рекомендуем ознакомиться с коротким и познавательным видео, на котором принцип работы крыла самолета изложен доступным языком.

Согласно закону Бернулли , чем выше поток частиц или жидкости, тем меньше будет наблюдаться внутреннее давление воздушного потока. Именно по этому закону создается профиль крыла, то есть поток частиц или жидкости, соприкасаясь с поверхностью профилей, равномерно распределятся по всем частям элемента.

В хвостовой зоне частицы также не должны соединяться, чтобы не образовался вакуум, поэтому верхняя часть элемента обладает большей кривизной. Именно такое строение позволяет создать меньшее давление на верхней части элемента, что и требуется для создания подъемной силы .

Сила подъема крыла может завесить и от «угловой атаки». Для ее замера используется длина хорды крыла и скорость встречного потока воздушных масс. Чем больше будет показатель «угловой атаки», тем будет больше сила подъема крыла. Поток воздушных масс может быть как ламинарным, так и турбулентным:

  1. Гладкий поток без вихрей называется ламинарным , с его помощью создается подъемная сила.
  2. При турбулентном потоке, который создается при помощи вихрей, равномерно распределить давление не получится, соответственно, и подъемную силу создать не удастся.

Чтобы воздушный транспорт имел нужный скоростной диапазон, мог осуществлять безопасную посадку и взлет, максимально разгонялся, существует специальный механизм управления крыла, в который входят следующие элементы:

  • закрылки и предкрылки;
  • интерцепторы;
  • щитки для посадки.

Закрылки устанавливаются в задней части, являются основными компонентами в механизме управления самолета. Они уменьшают скорость, предоставляют авиатранспорту необходимую силу для подъема в воздух. Предкрылки не допускают возникновения слишком большой «угловой атаки», элементы расположены в носовой части. Интерцепторы расположены вверху крыла, помогают снизить подъемную силу когда это необходимо.

Законцовка

Данная часть крыла самолета помогает увеличить размах крыла, в несколько раз снижает сопротивление, которое образуется воздушным потоком, а также увеличивает подъемную силу. Кроме этого, законцовка крыла самолета помогает увеличить длину, практически не изменив при этом его размах. При использовании законцовки расход топлива у самолетов сокращается в несколько раз, а у планеров увеличивается дальность пути. Чаще всего используются гребневые законцовки, который помогают экономнее использовать топливо, легче набирать высоту, уменьшить длину разбега перед взлетом.

Кроме этого, элемент крыла самолета гребневого типа в несколько раз уменьшает индукционное сопротивление. Сегодня они чаще всего применяются на Боингах-767, -777, -747-8, а в ближайшее время планируется установка на Боингах-787.

Вконтакте

Закрылки самолета могли стать причиной крушения Ту-154 25 декабря под Сочи. Такую версию выдвинули эксперты после расшифровки данных одного из черных ящиков.

Закрылки самолета: для чего, фото, зачем нужны при взлете и посадке

Причиной крушения Ту-154 в Сочи могли быть закрылки. Согласно предварительному анализу данных, полученных с одного из черных ящиков, развитие нештатной ситуации на борту могло начаться с не убравшихся по какой-то причине закрылков.

Пытаясь компенсировать возникший из-за этого пикирующий момент, пилоты усугубили ситуацию до критической, чрезмерно задрав нос самолета.

Как сообщает Life со ссылкой на близкий к следствию источник, эксперты без проблем смогли расшифровать запись с речевого бортового самописца. По его словам, разговор прерывается на том, что один из пилотов восклицает: «Закрылки, с...а!» Затем звучит крик: «Командир, падаем!».

— Скорость 300... (Неразборчиво)
— (Неразборчиво)
— Забрал стойки, командир.
— (Неразборчиво)
— Ух, е-мое!
(Звучит резкий сигнал)
— Закрылки, с...а, че за х***ня!
— Высотометр!
— Нам... (Неразборчиво)
(Звучит сигнал об опасном сближении с землей)
— (Неразборчиво)
— Командир, мы падаем!

Закрылки самолета для чего нужны, фото

Закрылками называют элемент механизации крыла. В убранном состоянии они являются продолжением поверхности крыла. В выпущенном состоянии отходят от него с образованием щелей. Закрылки нужны для улучшения несущей способности крыла во время набора высоты или взлете/посадке. Также они нужны во время полета на малых высотах.

При выпуске закрылок увеличивается кривизна профиля, что позволяет самолетам летать без сваливания на небольшой скорости. На Ту-154М используются двухщелевые закрылки, а на Ту-154Б трехщелевые. Выпуски закрылок могут производиться как автоматически, так и по команде пилотов из кабины.

По предварительным данным, на борту рассогласованно сработали закрылки, в результате их невыхода подъемная сила была потеряна, скорость не была достаточной для набора высоты, и самолет потерпел крушение.

Официальные данные о расшифровке записей пока не опубликованы.

Закрылки фото

Напомним, что самолет Минобороны РФ Ту-154 25 декабря в 01:38 по московскому времени вылетел с аэродрома Чкаловский в Подмосковье и направлялся на авиабазу Хмеймим в сирийской Латакии.

В Сочи воздушное судно остановилось на дозаправку, о чем не было известно заранее. В 05:27 по Москве самолет пропал с радаров спустя несколько минут после вылета из аэропорта Адлера. Позже стало известно, что лайнер упал в акватории Черного моря вблизи сочинского побережья.

На борту воздушного судна находились 92 человека, все они погибли.

Среди жертв катастрофы — 64 сотрудника ансамбля песни и пляски имени Александрова и его руководитель Валерий Халилов, три съемочных группы, врач Елизавета Глинка, которая везла в Сирию медикаменты, а также директор департамента культуры Минобороны Антон Губанков и члены экипажа.



Статьи по теме