Значение периодической системы. Реферат: Периодическая система и её значение в развитии химии Д.И. Менделеева Значение периодического закона и его смысл

Периодическая система элементов явилась одним из наиболее ценных обобщений в химии. Она представляет собой как бы конспект химии всех элементов, график по которому можно читать свойства элементов и их соединений. Система позволила уточнить положение, величины атомных масс, значение валентности некоторых элементов. На основе таблицы можно было предсказать существование и свойства еще неоткрытых элементов. Менделеев сформулировал периодический закон и предложил его графическое отображение, однако в то время нельзя было определить природу периодичности. Смысл периодического закона был выявлен позже, в связи с открытиями по строению атома.

1. В каком году был открыт периодический закон?

2. Что Менделеев взял за основу систематизации элементов?

3. Как гласит закон открытый Менделеевым?

4. В чем разница с современной формулировкой?

5. Что называется атомной орбиталью?

6. Как изменяются свойства в периодах?

7. Как подразделяются периоды?

8. Что называется группой?

9. Как подразделяются группы?

10. Какие виды электроновы вы знаете?

11. Как происходит заполнение энергетических уровней?

Лекция №4: Валентность и степень окисления. Периодичность изменения свойств.

Происхождение понятия валентности. Валентность химических элементов является одним из самых важных их свойств. Понятие валентности было введено в науку Э. Франкландом в 1852 г. Вначале понятие носило исключительно стехиометрический характер и вытекало из закона эквивалентов. Смысл понятия валентности вытекал из сопоставления величин атомной массы и эквивалента химических элементов.

С установлением атомно-молекулярных представлений понятие валентности приобрело определенный структурно-теоретический смысл. Под валентностью стали понимать способность одного атома данного элемента присоединять к себе то или иное число атомов другого химического элемента. За единицу валентности была принята соответствующая способность атома водорода, поскольку отношение атомной массы водорода к его эквиваленту равно единице. Таким образом валентность химического элемента определяли как способность его атома присоединять то или иное число атомов водорода. Если данный элемент не образовывал соединений с водородом, его валентность определялась как способность его атома замещать то или иное число атомов водорода в его соединениях.

Такое представление о валентности подтверждалось для простейших соединений.

На основе представления о валентности элементов возникло представление и о валентности целых групп. Так, например, группе OH, поскольку она присоединяла один атом водорода или замещала один атом водорода в других его соединениях, приписывалась валентность, равная единице. Однако представление о валентности теряло свою однозначность, когда дело касалось соединений более сложных. Так, например, в перекиси водорода H 2 O 2 валентность кислорода должна быть признана равной единице, поскольку в этом соединении на каждый атом кислорода приходится один атом водорода. Однако известно, что каждый атом кислорода в H 2 O 2 соединен с одним атомом водорода и одной одновалентной группой OH, т. е. кислород двухвалентен. Подобным образом валентность углерода в этане C 2 H 6 должна быть признана равной трем, так как в этом соединении на каждый атом углерода приходится по три атома водорода, но, поскольку каждый атом углерода соединен с тремя атомами водорода и одной одновалентной групой CH 3 , валентность углерода в C 2 H 6 равна четырем.



Следует заметить, что при формировании представлений о валентности отдельных элементов указанные осложняющие обстоятельства не принимались во внимание, а учитывался только состав простейших соединений. Но и при этом оказалось, что у многих элементов валентность в различных соединениях не одинакова. Особенно это было заметно для соединений некоторых элементов с водородом и кислородом, в которых проявлялась различная валентность. Так, в соединении с водородом валентность серы оказалась равной двум, а с кислородом – шести. Поэтому стали различать валентность по водороду и валентность по кислороду.

В дальнейшем в связи с представлением о том, что в соединениях одни атомы поляризованы положиельно, а другие отрицательно, понятие о валентности в кислородных и водородных соединениях было заменено понятием о положительной и отрицательной валентности.

Различные значения валентности у одних и тех же элементов проявлялись также в их различных соединениях с кислородом. Другими словами, одни и те же элементы оказались способны проявлять различную положительную валентность. Так появилось представление о переменной положительной валентности некоторых элементов. Что касается отрицательной валентности неметаллических элементов, то она, как правило, оказалась у одних и тех же элементов постоянной.

Элементов, проявляющих переменную положительную валентность, оказалось большинство. Однако для каждого из таких элементов характерной оказалась его максимальная валентность. Такая максимальная валентность получила название характеристичной .

В дальнейшем, в связи с возникновением и развитием электронной теории строения атома и химической связи, валентность стали связывать с числом электронов, переходящих от одного атома к другому, или с числом химических связей, возникающих между атомами в процессе образования химического соединения.

Электровалентность и ковалентность. Положительная или отрицательная валентность элемента – проще всего определить, если два элемента образовывали ионное соединение: считалось, что элемент, атом которого стал положительно заряженным ионом, проявил положительную валентность, а элемент, атом которого стал отрицательно заряженным ионом, – отрицательную. Численное значение валентности считалось равным величине заряда ионов. Поскольку ионы в соединениях образуются посредством отдачи и присоединения атомами электронов, величина заряда ионов обусловливается числом отданных (положительный) и присоединенных (отрицательный) атомами электронов. В соответствии с этим положительная валентность элемента измерялась числом отданных его атомом электронов, а отрицательная валентность – числом электронов, присоединенных данным атомом. Таким образом, поскольку валентность измерялась величиной электрического заряда атомов, она и получила название электровалентности. Ее называют также ионной валентностью.

Среди химических соединений встречаются такие, в молекулах которых атомы не поляризованы. Очевидно, для них понятие о положительной и отрицательной электровалентности неприменимо. Если же молекула составлена из атомов одного элемента (элементарные вещества), теряет смысл и обычное понятие о стехиометрической валентности. Однако, чтобы оценивать способность атомов присоединять то или иное число других атомов, стали использовать число химических связей, которые возникают между данным атомом и другими атомами при образовании химического соединения. Поскольку эти химические связи, представляющие собой электронные пары, одновременно принадлежащие обоим соединенным атомам, называются ковалентными, способность атома образовать то или иное число химических связей с другими атомами получила название ковалентности. Для установления ковалентности используются структурные формулы, в которых химические связи изображаются черточками.

Степень окисления и окислительное число. При реакциях образования ионных соединений переход электронов от одних реагирующих атомов или ионов к другим сопровождается соответствующим изменением величины или знака их электровалентности. При образовании соединений ковалентной природы такого изменения электровалентного состояния атомов фактически не происходит, а только имеет место перераспределение электронных связей, причем валентность исходных реагирующих веществ не изменяется. В настоящее время для характеристики состояния элемента в соединениях введено условное понятие степени окисления . Численное выражение степени окисления называют окислительным числом .

Окислительные числа атомов могут иметь положительное, нулевое и отрицательное значения. Положительное окислительное число определяется числом электронов, оттянутых от данного атома, а отрицательное окислительное число – числом притянутых данным атомом электронов. Окислительное число может быть приписано каждому атому в любом веществе, для чего нужно руководствоваться следующими простыми правилами:

1. Окислительные числа атомов в любых элементарных веществах равны нулю.

2. Окислительные числа элементарных ионов в веществах ионной природы равны значениям электрических зарядов этих ионов.

3. Окислительные числа атомов в соединениях ковалентной природы определяются при условном расчете, что каждый отянутый от атома электрон придает ему заряд, равный +1, а каждый притянутый электрон – заряд, равный –1.

4. Алгебраическая сумма окислительных чисел всех атомов любого соединения равна нулю.

5. Атом фтора во всех его соединениях с другими элементами имеет окислительное число –1.

Определение степени окисления связано с понятием об электроотрицательности элементов. С использованием этого понятия формулируется еще одно правило.

6. В соединениях окислительное число отрицательно у атомов элементов с большей электроотрицательностью и положительно – у атомов элементов с меньшей электроотрицательностью.

Понятие степени окисления, таким образом, пришло на смену понятию электровалентности. В связи с этим представляется нецелесообразным пользоваться и понятием ковалентности. Для характеристики элементов лучше применять понятие валентности, определяя ее числом электронов, используемых данным атомом для образования электронных пар, независимо от того, притягиваются они к данному атому, или, наоборот, оттягиваются от него. Тогда валентность будет выражаться числом без знака. В отличие от валентности степень окисления определяется числом электронов, оттянутых от данного атома, – положительная, или притянутых к нему, – отрицательная. Во многих случаях арифметические значения валентности и степени окисления совпадают – это вполне естественно. В некоторых же случаях числовые значения валентности и степени окисления отличаются друг от друга. Так, например, в молекулах свободных галогенов валентность обоих атомов равна единице, а степень окисления – нулю. В молекулах кислорода и перекиси водорода валентность обоих атомов кислорода равна двум, а степень окисления их в молекуле кислорода равна нулю, а в молекуле перекиси водорода – минус единице. В молекулах азота и гидразина – N 4 H 2 – валентность обоих атомов азота равна трем, а степень окисления в молекуле элементарного азота – нулю, а в молекуле гидразина – минус двум.

Очевидно, что валентность характеризует атомы, только входящие в состав какого-либо соединения, хотя бы гомоядерного, т. е. состоящего из атомов одного элемента; о валентности же отдельных атомов говорить бессмысленно. Степень же окисления характеризует состояние атомов как входящих в какое-либо соединение, так и существующих отдельно.

Вопросы для закрепления темы:

1. Кем было введено понятие «валентность»?

2. Что называется валентностью?

3. В чем отличие валентности и степени окисления?

4. Какой бывает валентность?

5. Как определяется степень окисления?

6. Всегда ли валентность и степень окисления элемента равны?

7. По какому элементу определяется валентность элемента?

8. Что характеризует валентность элемента, а что степень окисления?

9. Может ли быть валентность элемента отрицательной?

Лекция№ 5: Скорость химической реакции.

Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

    Предпосылкой открытия Периодического закона послужили решения международного съезда химиков в городе Карлсруэ в 1860 году, когда окончательно утвердилось атомно - молекулярное учение были предприняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой.

    Д. И. Менделеев в своём открытии опирался на чётко сформулированные исходные положения:

    Общее неизменное свойство атомов всех химических элементов - их атомная масса;

    Свойства элементов зависят от их атомных масс;

    Форма этой зависимости - периодическая.

    Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

    III Периодический закон и Периодическая система химических элементов.

    Открытие Менделеевым Периодического закона.

    Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.

    Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:

    Свойства элементов периодически изменяются в соответствии с их атомным весом.

    Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Ядро состоит из протонов и нейтронов. Число протонов и нейтронов в ядрах большинства элементов примерно одинаково, поэтому атомный вес увеличивается примерно так же, как увеличивается число протонов в ядре (заряд ядра Z).

    Принципиальная новизна Периодического закона заключалась в следующем:

    1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

    2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами.

    Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми. Это давало возможность предсказать существование еще неизвестных элементов.

    Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

    Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и точно предсказать их свойства! Д. И. Менделеев точно предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет этот элемент действительно был открыт немецким химиком Винклером и назван германием.

    Сопоставление свойств, предсказанных Д. И. Менделеевым для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция".

    Свойство

    Предсказано Д. И. Менделеевым для "эка-силиция" в 1870 году

    Определено для германия Ge, открытого в 1886 году

    Цвет, внешний вид

    коричневый

    светло-коричневый

    Атомный вес

    72,59

    Плотность (г/см3)

    5,5

    5,35

    Формула оксида

    ХО2

    GeO2

    Формула хлорида

    XCl4

    GeCl4

    Плотность хлорида (г/см3)

    1,9

    1,84

    Точно так же блестяще подтвердились предсказанные Д. И. Менделеевым свойства "эка-алюминия" (элемент галлий Ga, открыт в 1875 году) и "эка-бора" (открытый в 1879 году элемент скандий Sc).

    После этого ученым всего мира стало ясно, что Периодическая таблица Д. И. Менделеева не просто систематизирует элементы, а является графическим выражением фундаментального закона природы - Периодического закона.

    Структура Периодической системы.

    На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

    Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

    Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).

    Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

    В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

    В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

    Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

    Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.

    IV Периодический закон и строение атома.

    Основные сведения строения атомов.

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    катодные лучи (английский физик Дж. Дж. Томсон, 1897 г.), частицы которых получили название электроны e− (несут единичный отрицательный заряд);

    естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4He2+);

    наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);

    искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)

    наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).

    В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).

    Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

    Электронная оболочка атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни); уровни, в свою очередь, подразделяются на подуровни, а подуровни включают атомные орбитали, которые могут различаться формой и размерами (обозначаются буквами s, p, d, f и др.).

    Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая и точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

    Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1 до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов, то и они периодически повторяются. В этом физический смысл периодического закона.

    Каждый период в периодической системе начинается элементами, атомы которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

    Заканчивается период элементами, атомы которых на внешнем уровне содержат 2(s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Аr, Кr, Хе, имеющие инертные свойства.

периодический закон менделеев атом

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. Особо четко она проявляется в структурировании научного и учебного материала химии. Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии сначала на уровне мысленных модельных построений Менделеев заподозрил ошибку в исследованиях свойств бериллия. Затем он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов). Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Точно так же работы Карла Карловича Клауса помогли Менделееву сформировать своеобразную VIII группу элементов, объяснив горизонтальное и вертикальное сходство в триадах элементов:

железо кобальт никель

рутений родий палладий

осьмий иридий платина

Прогностическая (предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32. Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Ф. Энгельс писал: «Применив бессознательно гегелевский закон о переходе количества в качество, Менделеев совершил научный подвиг, который смело можно поставить рядом с открытием Лаверрье, вычислившего орбиту неизвестной планеты Нептун». Однако возникает желание поспорить с классиком. Во-первых, все исследования Менделеева, начиная со студенческих лет, вполне осознанно опирались на гегелевский закон. Во-вторых, Лаверрье рассчитал орбиту Нептуна по давно известным и проверенным законам Ньютона, а Д. И. Менделеев все предсказания делал на основе им же самим открытого всеобщего закона природы.

В конце жизни Менделеев с удовлетворением отмечал: «Писавши в 1871 году статью о приложении периодического закона к определению свойств еще не открытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны мной были три элемента: экабор, экаалюминий и экасилиций, и не прошло и 20 лет, как я имел уже величайшую радость видеть все три открытыми... Л. де Буабодра-на, Нильсона и Винклера я, со своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне». Всего же Менделеевым были предсказаны двенадцать элементов.

С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений, в том числе дотоле неизвестных. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках. Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы. Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленно от этой группы (например, с общей формулой типа АзВ;). Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г. Моз-ли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл. Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Те же исследования Мозли позволили снять серьезную «головную боль», которую доставляли Менделееву известные отступления от правильного ряда возрастающих в таблице атомных масс элементов. Их Менделеев сделал под давлением химических аналогий, отчасти на экспертном уровне, а отчасти и просто на уровне интуитивном. Например, кобальт опережал в таблице никель, а иод с меньшим атомным весом следовал за более тяжелым теллуром. В естественных науках давно известно, что один «безобразный» факт, не укладывающийся в рамки самой прекрасной теории, может погубить ее. Так и необъясненные отступления грозили Периодическому закону. Но Мозли экспериментально доказал, что порядковые номера кобальта (№ 27) и никеля (№ 28) точно соответствуют их положению в системе. Оказалось, что эти исключения лишь подтверждают общее правило.

Важное предсказание было сделано в 1883 г. Николаем Александровичем Морозовым. За участие в народовольческом движении студент-химик Морозов был приговорен к смертной казни, замененной позднее на пожизненное заключение в одиночной камере. В царских тюрьмах он провел около тридцати лет. Узник Шлиссельбургской крепости имел возможность получать некоторую научную литературу по химии. На основании анализа интервалов атомных весов между соседними группами элементов в таблице Менделеева Морозов пришел к интуитивному выводу о возможности существования между группами галогенов и щелочных металлов еще одной группы неизвестных элементов с «нулевыми свойствами». Искать их он предложил в составе воздуха. Более того, он высказал гипотезу о строении атомов и на ее основе пытался вскрыть причины периодичности в свойствах элементов.

Однако гипотезы Морозова стали доступны для обсуждения намного позднее, когда он вышел на свободу после событий 1905 г. Но к тому времени инертные газы были уже открыты и изучены.

Долгое время факт существования инертных газов и их положение в таблице Менделеева вызывали серьезные разногласия в химическом мире. Сам Менделеев какое-то время полагал, что под маркой открытого аргона может прятаться неизвестное простое вещество типа Nj. Первое рациональное предположение о месте инертных газов сделал автор их открытия Вильям Рамзай. А в 1906 г. Менделеев писал: «При установлении Периодической системы (18б9) не только не был известен аргон, но и не было повода подозревать возможность существования подобных элементов. Нынче... эти элементы по величине их атомных весов заняли точное место между галогенами и щелочными металлами».

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы. Каждая точка зрения имеет свои «за» и «против».

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов. Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертными.

Свою предсказательную функцию периодический закон сохраняет и до наших дней.

Нужно отметить, что предсказания неизвестных членов любого множества могут быть двух видов. Если предсказываются свойства элемента, находящегося внутри известного ряда подобных, то такое предсказание носит название интерполяции. Естественно предположить, что эти свойства будут подчинены тем же закономерностям, что и свойства соседних элементов. Так были предсказаны свойства недостающих элементов внутри периодической таблицы. Гораздо труднее предвидеть характеристики новых членов множеств, если они находятся за пределами описанной части. Экстраполяция -- предсказание значений функции, находящихся за пределами ряда известных закономерностей, -- всегда носит менее определенный характер.

Именно эта проблема встала перед учеными, когда начались поиски элементов, стоящих за известными границами системы. В начале XX в. таблица Менделеева заканчивалась ураном (№ 92). Первые попытки получения трансурановых элементов были предприняты в 1934 г., когда Энрико Ферми и Эмилио Сегре бомбардировали уран нейтронами. Так начиналась дорога к актинои-дам и трансактиноидам.

Ядерные реакции используют и для синтеза других, неизвестных ранее элементов.

Искусственно синтезированный Еиенном Теодором Сиборгом и его сотрудниками элемент № 101 получил название «менделевий». Сам Сиборг об этом сказал так: «Особенно существенно отметить, что элемент 101 назван в честь великого русского химика Д. И. Менделеева американскими учеными, которые всегда считали его пионером в химии».

Число вновь открытых, а точнее, искусственно созданных элементов постоянно растет. Синтез наиболее тяжелых ядер элементов с порядковыми номерами 113 и 115 осуществлен в российском Объединенном институте ядерных исследований в Дубне путем бомбардировки ядер искусственно полученного америция ядрами тяжелого изотопа кальция-48. При этом возникает ядро элемента № 115, тут же распадающееся с образованием ядра элемента № 113. Подобные сверхтяжелые элементы в природе не существуют, но они возникают при взрывах сверхновых звезд, а также могли существовать в период Большого взрыва. Их исследование помогает понять, как возникла наша Вселенная.

Всего в природе встречается 39 естественных радиоактивных изотопов. Различные изотопы распадаются с разной скоростью, которую характеризует период полураспада. Период полураспада урана-238 составляет 4,5 млрд. лет, а для некоторых других элементов он может быть равен миллионным долям секунды.

Радиоактивные элементы, последовательно распадаясь, превращаясь друг в друга, составляют целые ряды. Известны три таких ряда: по начальному элементу все члены рядов объединяются в семейства урана, актиноурана и тория. Еще одно семейство составляют искусственно полученные радиоактивные изотопы. Во всех семействах превращения завершаются возникновением нерадиоактивных атомов свинца.

Поскольку в земной коре могут находиться только изотопы, период полураспада которых соизмерим с возрастом Земли, то можно предположить, что на протяжении миллиардов лет ее истории существовали и такие короткоживущие изотопы, которые к настоящему времени в прямом смысле этого слова вымерли. К таким, вероятно, относился и тяжелый изотоп калия-40. В результате его полного распада табличное значение атомной массы калия сегодня составляет 39,102, поэтому он уступает по массе элементу № 18 аргону (39,948). Так объясняются исключения в последовательном увеличении атомных масс элементов в периодической таблице.

Академик В. И. Гольданский в речи, посвященной памяти Менделеева, отмечал «фундаментальную роль, которую труды Менделеева играют даже в совершенно новых областях химии, зародившихся через десятилетия после смерти гениального творца Периодической системы».

Наука есть история и хранилище мудрости и опыта веков, их разумного созерцания и испытанного суждения.

Д. И. Менделеев

Редко бывает, чтобы научное открытие оказалось чем-то совершенно неожиданным, почти всегда оно предчувствуется:

однако последующим поколениям, которые пользуются апробированными ответами на все вопросы, часто нелегко оценить, каких трудностей это стоило их предшественникам.

Ч. Дарвин

Каждая из наук об окружающем нас мире имеет предметом изучения конкретные формы движения материи. Сложившиеся представления рассматривают эти формы движения в порядке повышения их сложности:

механическая -- физическая - химическая -- биологическая -- социальная. Каждая из последующих форм не отвергает предыдущие, но включает их в себя.

Совсем не случайно на праздновании столетия со дня открытия Периодического закона Г. Т. Сиборг посвятил свой доклад новейшим достижениям химии. В нем он высоко оценил удивительные заслуги российского ученого: «При рассмотрении эволюции Периодической системы со времен Менделеева наиболее сильное впечатление производит то, что он был в состоянии создать Периодическую систему элементов, хотя Менделееву не были известны такие общепринятые теперь понятия, как ядерная структура и изотопы, связь порядковых номеров с валентностью, электронная природа атомов, периодичность химических свойств, объясняемая электронной структурой, и, наконец, радиоактивность».

Можно привести слова академика А. Е. Ферсмана, обратившего внимание на будущее: «Будут появляться и умирать новые теории, блестящие обобщения. Новые представления будут сменять наши уже устаревшие понятия об атоме и электроне. Величайшие открытия и эксперименты будут сводить на нет прошлое и открывать на сегодня невероятные по новизне и широте горизонты -- все это будет приходить и уходить, но Периодический закон Менделеева будет всегда жить и руководить исканиями».

Д. И. Менделеев писал: «До периодического закона элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая закономерность первая дала возможность видеть не открытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

С открытием Периодического закона химия перестала быть описательной наукой - она получила инструмент научного предвидения. Этот закон и его графическое отображение - таблица Периодической системы химических элементов Д. И. Менделеева - выполнили все три важнейшие функции теоретического знания: обобщающую, объясняющую и прогностическую. На их основе ученые:

  • систематизировали и обобщили все сведения о химических элементах и образуемых ими веществах;
  • дали обоснование различным видам периодической зависимости, существующим в мире химических элементов, объяснив их на основе строения атомов элементов;
  • предсказали, описали свойства еще не открытых химических элементов и образованных ими веществ, а также указали пути их открытия.

Систематизировать и обобщить сведения о химических элементах пришлось самому Д. И. Менделееву, когда он открывал Периодический закон, строил и совершенствовал свою таблицу. Причем ошибки в значениях атомных масс и наличие не открытых еще элементов создавали дополнительные трудности. Но великий ученый был твердо уверен в истинности открытого им закона природы. Основываясь на сходстве в свойствах и веря в правильность определения места элементов в таблице Периодической системы, он существенно изменил принятые в то время атомные массы и валентность в соединениях с кислородом у десяти элементов и «подправил» их еще у десяти других. Восемь элементов он разместил в таблице вопреки принятым в то время представлениям об их сходстве с другими. Например, таллий он исключил из естественного семейства щелочных металлов и поместил в III группу согласно проявляемой им высшей валентности; бериллий с неверно определенной относительной атомной массой (13) и валентностью III он перевел из III группы во II, изменив значение его относительной атомной массы на 9 и высшую валентность на II.

Большинство ученых восприняли поправки Д. И. Менделеева как научное легкомыслие, необоснованную дерзость. Периодический закон и таблица химических элементов рассматривались как гипотеза, т. е. предположение, нуждающееся в проверке. Ученый понимал это и именно для проверки правильности открытого им закона и системы элементов подробно описал свойства не открытых еще элементов и даже способы их открытия, исходя из предполагаемого места в системе. По первому варианту таблицы он сделал четыре прогноза о существовании неизвестных элементов (галлий, германий, гафний, скандий), а по усовершенствованному, второму - еще семь (технеций, рений, астат, франций, радий, актиний, протактиний).

За период с 1869 по 1886 г. были открыты три предсказанных элемента: галлий (П. Э. Лекок де Буабодран, Франция, 1875 г.), скандий (Л. Ф. Нильсон, Швеция, 1879 г.) и германий (К. Винклер, Германия, 1886 г.). Открытие первого из этих элементов, подтвердившее правильность прогноза великого русского ученого, вызвало у его коллег только интерес и удивление. Открытие же германия стало подлинным триумфом Периодического закона. К. Винклер писал в статье «Сообщение о германии»: «Не подлежит больше никакому сомнению, что новый элемент есть не что иное, как предсказанный Менделеевым за пятнадцать лет до этого экасилиций. Ибо едва ли может быть дано более убедительное доказательство справедливости учения о периодичности элементов, чем воплощение бывшего до сих пор гипотетическим экасилиция, и оно представляет собой поистине нечто большее, чем простое подтверждение смело выдвинутой теории, - оно означает выдающееся расширение химического поля зрения, могучий шаг в области познания».

На основе закона и таблицы Д. И. Менделеева были предсказаны и открыты благородные газы. И сейчас этот закон служит путеводной звездой для открытия или искусственного создания новых химических элементов. Например, можно утверждать, что элемент с № 114 похож на свинец (экасвинец), а № 118 будет благородным газом (экарадон).

Открытие Периодического закона и создание таблицы Периодической системы химических элементов Д. И. Менделеевым стимулировало поиск причин взаимосвязи элементов, способствовало выявлению сложной структуры атома и развитию учения о строении атома. Это учение, в свою очередь, позволило вскрыть физический смысл Периодического закона и объяснить расположение элементов в Периодической системе. Оно привело к открытию атомной энергии и использованию ее для нужд человечества.

Вопросы и задания к § 5

  1. Проанализируйте распределение биогенных макроэлементов по периодам и группам Периодической системы Д. И. Менделеева. Напомним, что к ним относят С, Н, О, N, Са, S, Р, К, Mg, Fe.
  2. Почему элементы главных подгрупп 2-го и 3-го периодов называют химическими аналогами? В чем проявляется эта аналогия?
  3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д. И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.
  4. Почему так похожи свойства лантана и лантаноидов, актиния и актиноидов?
  5. Какие формы соединений будут одинаковыми у элементов главных и побочных подгрупп?
  6. Почему общие формулы летучих водородных соединений в Периодической системе пишут только под элементами главных подгрупп, а формулы высших оксидов - под элементами обеих подгрупп (посередине)?
  7. Какова общая формула высшего гидроксида, соответствующего элементам VII группы? Каков его характер?

Введение

Периодический закон Д. И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в периодической системе. Как указывал Н. Д. Зелинский, периодический закон явился «открытием взаимной связи всех атомов в мироздании».

Химия перестала быть описательной наукой. С открытием периодического закона в ней стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения... Блестящий пример тому - предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех - Ga, Sc и Ge - он дал точное описание их свойств.


Периодическая система и ее значение для понимания научной картины мира

Периодическая система элементов Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева . П. с. э. разработана Д. И. Менделеевым в 1869-1871.

История П. с. э. Попытки систематизации химических элементов предпринимались различными учёными в Германии, Франции, Англии, США с 30-х годов 19 в. Предшественники Менделеева - И. Дёберейнер , Ж. Дюма , французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по химическим свойствам, так называемых "естественных групп" (например, "триады" Дёберейнера). Однако эти учёные не шли дальше установления частных закономерностей внутри групп. В 1864 Л. Мейер на основании данных об атомных весах предложил таблицу, показывающую соотношение атомных весов для нескольких характерных групп элементов. Теоретических сообщений из своей таблицы Мейер не сделал.

Прообразом научной П. с. э. явилась таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве", составленная Менделеевым 1 марта 1869. На протяжении последующих двух лет автор совершенствовал эту таблицу, ввёл представления о группах, рядах и периодах элементов; сделал попытку оценить ёмкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 он назвал свою систему естественной, а в 1871 - периодической. Уже тогда структура П. с. э. приобрела во многом современные очертания.

Чрезвычайно важным для эволюции П. с. э. оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов (U, In, Ce и его аналогов), в чём состояло первое практическое применение П. с. э., а также впервые предсказал существование и основные свойства нескольких неизвестных элементов, которым соответствовали незаполненные клетки П. с. э. Классическим примером является предсказание "экаалюминия" (будущего Ga, открытого П. Лекоком де Буабодраном в 1875), "экабора" (Sc, открытого шведским учёным Л. Нильсоном в 1879) и "экасилиция" (Ge, открытого немецким учёным К. Винклером в 1886). Кроме того, Менделеев предсказал существование аналогов марганца (будущие Тс и Re), теллура (Po), иода (At), цезия (Fr), бария (Ra), тантала (Pa).

П. с. э. не сразу завоевала признание как фундаментальное научное обобщение; положение существенно изменилось лишь после открытия Ga, Sc, Ge и установления двухвалентности Be (он долгое время считался трёхвалентным). Тем не менее П. с. э. во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов. Поэтому вплоть до физического обоснования периодического закона и разработки теории П. с. э. многие факты не удавалось объяснить. Так, неожиданным явилось открытие в конце 19 в. инертных газов, которые, казалось, не находили места в П. с. э.; эта трудность была устранена благодаря включению в П. с. э. самостоятельной нулевой группы (впоследствии VIIIa -подгруппы). Открытие многих "радиоэлементов" в начале 20 в. привело к противоречию между необходимостью их размещения в П. с. э. и её структурой (для более чем 30 таких элементов было 7 "вакантных" мест в шестом и седьмом периодах). Это противоречие было преодолено в результате открытия изотопов . Наконец, величина атомного веса (атомной массы) как параметра, определяющего свойства элементов, постепенно утрачивала своё значение.

Одна из главных причин невозможности объяснения физического смысла периодического закона и П. с. э. состояла в отсутствии теории строения атома. Поэтому важнейшей вехой на пути развития П. с. э. явилась планетарная модель атома, предложенная Э. Резерфордом (1911). На её основе голландский учёный А. ван ден Брук высказал предположение (1913), что порядковый номер элемента в П. с. э. (атомный номер Z) численно равен заряду ядра атома (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913-14, см. Мозли закон ). Так удалось установить, что периодичность изменения свойств элементов зависит от атомного номера, а не от атомного веса. В результате на научной основе была определена нижняя граница П. с. э. (водород как элемент с минимальным Z = 1); точно оценено число элементов между водородом и ураном; установлено, что "пробелы" в П. с. э. соответствуют неизвестным элементам с Z = 43, 61, 72, 75, 85, 87.

Оставался, однако, неясным вопрос о точном числе редкоземельных элементов, и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории П. с. э. на основе квантовых представлений о строении атома (см. далее). Физическое обоснование периодического закона и открытие явления изотонии позволили научно определить понятие "атомная масса" ("атомный вес"). Прилагаемая периодическая система содержит современные значения атомных масс элементов по углеродной шкале в соответствии с Международной таблицей 1973. В квадратных скобках приведены массовые числа наиболее долгоживущих изотопов радиоактивных элементов. Вместо массовых чисел наиболее устойчивых изотопов 99 Tc, 226 Ra, 231 Pa и 237 Np указаны атомные массы этих изотопов, принятые (1969) Международной комиссией по атомным весам.

Структура П. с. э. Современная (1975) П. с. э. охватывает 106 химических элементов; из них все трансурановые (Z = 93-106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю П. с. э. было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, спирали) и т.д. Наибольшее распространение получили три формы П. с. э.: короткая, предложенная Менделеевым и получившая всеобщее признание; длинная лестничная. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером . Лестничная форма предложена английским учёным Т. Бейли (1882), датским учёным Ю. Томсеном (1895) и усовершенствована Н. Бором (1921). Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П. с. э. является разделение всех химических элементов на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а - и б -подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом (особый случай - первый период); каждый период содержит строго определённое число элементов. П. с. э. состоит из 8 групп и 7 периодов (седьмой пока не завершен).

Специфика первого периода в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia -, либо (предпочтительнее) в VIIa -подгруппу. Гелий - первый представитель VIIa -подгруппы (однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be - металл, степень окисления II. Металлический характер следующего элемента В выражен слабо (степень окисления III). Идущий за ним C - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.

Третий период (Na - Ar) также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar - типичные неметаллы, но все они (кроме Ar) проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а .

По современной терминологии (см. далее), элементы этих периодов относятся к s -элементам (щелочные и щёлочноземельные металлы), составляющим Ia - и IIa -подгруппы (выделены на цветной таблице красным цветом), и р -элементам (В - Ne, At - Ar), входящим в IIIa - VIIIa -подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов , а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов.

Четвёртый период (K - Kr) содержит 18 элементов (первый большой период, по Менделееву). После щелочного металла K и щёлочноземельного Ca (s-элементы) следует ряд из десяти так называемых переходных элементов (Sc - Zn), или d- элементов (символы даны синим цветом), которые входят в подгруппы б соответствующих групп П. с. э. Большинство переходных элементов (все они металлы) проявляет высшие степени окисления, равные номеру группы. Исключение - триада Fe - Co - Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr (р -элементы), принадлежат к подгруппам а , и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения (главным образом с F), но степень окисления VIII для него неизвестна.

Пятый период (Rb - Xe) построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов (Y - Cd), d -элементов. Специфические особенности периода: 1) в триаде Ru - Rh - Pd только рутений проявляет степень окисления VIII; 2) все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3) у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров.

Шестой период (Cs - Rn) включает 32 элемента. В нём помимо 10 d -элементов (La, Hf - Hg) содержится совокупность из 14 f -элементов, лантаноидов , от Ce до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме П. с. э. лантаноиды включаются в клетку La (поскольку их преобладающая степень окисления III) и записываются отдельной строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. с. э., хорошо отражающие специфику лантаноидов на фоне целостной структуры П. с. э. Особенности периода: 1) в триаде Os - Ir - Pt только осмий проявляет степень окисления VIII; 2) At имеет более выраженный (по сравнению с 1) металлический характер; 3) Rn, по-видимому (его химия мало изучена), должен быть наиболее реакционноспособным из инертных газов.

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из которых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia - и IIa -подгрупп (s-элементы), Ac - аналог элементов IIIб -подгруппы (d -элемент). Следующие 14 элементов, f -элементы (с Z от 90 до 103), составляют семейство актиноидов . В короткой форме П. с. э. они занимают клетку Ac и записываются отдельной строкой внизу таблицы, подобно лантаноидам, в отличие от которых характеризуются значительным разнообразием степеней окисления. В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Изучение химической природы элементов с Z = 104 и Z = 105 показало, что эти элементы являются аналогами гафния и тантала соответственно, то есть d -элементами, и должны размещаться в IVб - и Vб -подгруппах. Членами б -подгрупп должны быть и последующие элементы до Z = 112, а далее (Z = 113-118) появятся р -элементы (IIIa - VIlla -подгруппы).

Теория П. с. э. В основе теории П. с. э. лежит представление о специфических закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в атомах по мере роста Z. Это представление было развито Бором в 1913-21 с учётом характера изменения свойств химических элементов в П. с. э. и результатов изучения их атомных спектров. Бор выявил три существенные особенности формирования электронных конфигураций атомов: 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей электронов, относящихся к оболочкам с большими значениями n ; 2) сходные типы электронных конфигураций атомов периодически повторяются; 3) границы периодов П. с. э. (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

Значение П. с. э. П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия "химический элемент" и уточнить понятия о простых веществах и соединениях. Закономерности, вскрытые П. с. э., оказали существенное влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго научная постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. П. с. э.- фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т.д. П. с. э.- также научная основа преподавания химии.

Вывод

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.



Статьи по теме